NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF MATHEMATICS

COURSE PLAN – PART I					
Name of the programme and specialization	B.Tech (ECE) IV Semester –A				
Course Title	Probability Theory and Random Processes (B.Tech. IV Sem ECE)				
Course Code	MAIR 45	No. of Credits	3		
Course Code of Pre- requisite subject(s)	MAIR 21	MAIR 34			
Session	Jan.2019	Section (if, applicable)	A		
Name of Faculty	Dr.D.Deivmoney selvam	Department	Mathematics		
Official Email	selvam@nitt.edu	Telephone No.	0431-2503667		
Name of Course Coordinator(s) (if, applicable)					
Official Email	as above	Telephone No.	As above		
Course Type	yes Core course		Elective course		

Syllabus (approved in BoS)

Axioms of probability theory. Probability spaces. Joint and conditional probabilities. Bayes' Theorem- Independent events

Random variables and random vectors. Distributions and densities. Independent random variables. Functions of one and two random variables.

Moments and characteristic functions. Inequalities of Chebyshev and Schwartz. Convergence concepts.

Random processes. Stationarity and ergodicity. Strict sense and wide sense stationary processes. Covariance functions and their properties. Spectral representation. Wiener -Khinchine theorem.

Gaussian processes. Processes with independent increments. Poisson processes. Low pass and Band pass noise representations

COURSE OBJECTIVES

- 1. To understand the basic concept of randomness, random variable, its categories and behaviour
- 2. To study various probabilistic tools systematically

3. To formulate problems arising in engineering and technology, using the tool of probaility and random process, solving them and giving interpretation for the results and modifing, if necessary.

COURSE OUTCOMES					
Course Outcomes	Aligned Programme Outcomes (PO)				
 Understand the axiomatic formulation of modern Probability Theory and think of random variables as an intrinsic need for the analysis of random phenomena. characterize probability models and function of random variables based on single & multiples random variables. To evaluate and apply moments & characteristic functions and understand the concept of inequalities and probabilistic limits. To understand the concept of random processes and determine covariance and spectral density of stationary random processes. To demonstrate the specific applications to Poisson and Gaussian processes and representation of low pass and band pass noise models 	 1.To identify and use probabilistic tool like random variable, its type for the framing the problems in electronic topics 2. To study the randomness in communications using distribution and other related tool of probability like MGF,CF 3. To study the behavior of the problems in the engineering with reference to time using stochastic processes. 				

COURSE PLAN – PART II

COURSE OVERVIEW

refer syllbus above

COURSE TEACHING AND LEARNING ACTIVITIES

S.No	Wee	k/Contact Hours	Торіс	Mode o	of Delivery
S.No.	Week	Торіс			Mode of Delivery
1	1	I-Introduction & definitions Addition theorems- conditional probability- Mutually exclusive & independent events-problems			Chalk & Talk
2	2	Total & Baye's Theorems Probability space & sigma space II Random variables definition & types			Chalk & Talk
3	3	pmf, pdf, PDF. Mixed definitions & properties Standard distributions		Chalk & Talk	

4	4	Non-standard distributions Two random variables and joint distribution function			Chalk & Talk		
5	5	Joint probability mass function (pmf), probability density function (pdf), probability distribution function(PDF) properties & problems independent random variables Marginal distributions					
6	6	Chalk & Talk					
7	7 $Y=f(X)$ for $f(X) = aX+b$, $X^2, X^{1/2}$, e^{ax} , $log(X)$, $(X)^{1/2}$ problems				Chalk & Talk		
8	8	8 Function of two random variables $Z=f(X,Y)$ for $f(X,Y)=$ X+Y,X-Y, XY,X/Y max(X,Y) and min(X,Y) problems					
9	9	MGF& CF definitions & properties- MGF problems nonstandard df ,CF properties and problems					
10	10	0 Chebychev's inequality-Schwartz's inequality and problems, Convergences types and definitions Problems in convergence					
11	11	11 Random process and types -Stationary process & types WSS and SSS problems-Ergodicity Types and problems					
12	12	2 Covariance function and its properties and Problems Spectral representation-I					
13	13	Spectral representation- Wiener-Khinchine theo	Chalk & Talk				
14	14	Processes with indepen Poisson processes- prop	Chalk & Talk				
15	15	Low pass Band pass no	Chalk & Talk				
COURSE ASSESSMENT METHODS (shall range from 4 to 6)							
S.No	Mode of Assessment		Week/Date	Duration	% Weightage		
1	Asignment-1		5 th week	4 weeks	5%		
2	Test-1		6 th week	one hour	20%		
3	Asignment-2		12 th week	4 weeks	5%		
4	Test-2		13 th week	one hour	20%		
СРА	Compensation Assessment*		14 th week	one hour	20%		
5	Final Assessment *		16 th /17 th week	3 hpours	50%		
*mandatory; refer to guidelines on page 4							

Page 3 of 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

feedback in the mid semester

COURSE POLICY (including compensation assessment to be specified)

One test is permissible for the students who miss on or both the Tests. No deviation from the stated Attendance policy. Disciplined learning of the subject is expected and the faculty will be available for understanding, clarifying and pursue any topic of the subject.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

nil

FOR APPROVAL

Course Faculty 24/112019

Chairperson