2rd 4 4th year Dr. Chaskas

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEN	IPLATE	Light Light Control			
Course Title	Digital speech process	ing (Elective c	ourse) (3°d and 4th year)		
Course Code	ECPE2 O	No. of Credits	3		
Department	B.Tech, ECE	Faculty	Dr. E. S. Gopi		
Pre-requisites Course Code	ECPC15				
Course Coordinator(s) (if, applicable)	Nil				
E-mail	esgopi@nitt.edu	Telephone No.	9500423313		
Course Type	Core course		tive course		
speech-Perception of Lou Feature extraction of the estimation: Autocorrelation	udness - Critical bands – P speech signal: Endpoint d on approach- Homomorphi	ritch perception etection-Dynam c approach-For	nic time warping- Pitch frequency mant frequency estimation using		
vocal tract model and H tract-Reflection co-efficien		near predictive	co-efficient -Poles of the vocal		
	frequencies- Functional a-Time resolution vers		ear- Mel frequency cepstral co- resolution-Discrete wavelet		
Machine- Hidden Markov system: K-Means and F reduction techniques: Pr	 Model (HMM)-Gaussian uzzy K-means clustering 	Mixture Model - Kohonen sel sis (PCA), Line	Neural Network-Support Vector (GMM) -Unsupervised Learning f-organizing map-Dimensionality ear discriminant analysis (LDA),		
code modulation- Code	Exited Linear prediction (Speech (TTS) analysis	CELP)-Quality	e quantization-Differential pulse assessment of the compressed speech synthesis systems-Unit		
COURSE OBJECTIVES					
speech communication.		echniques could	I be used for solving problems in		
COURSE OUTCOMES (
Cou	rse Outcomes	A	Aligned Programme Outcomes (PO)		
At the end of the course CO1: illustrate how the sp	-	01			

CO2:summarize the various techniques involved in collecting the features from the speech signal in both time and	PO1, PO11
frequency domain.	
CO3:summarize the functional blocks of the ear	PO1
CO4:compare the various pattern recognition techniques involved in speech and speaker detection	PO1,PO11
CO5: summarize the various speech compression techniques	PO1
DO4 C L L - FEL-thrains and Communication Engineering Prog	ramme will have the ability to apply

PO1: Graduates of Electronics and Communication Engineering Programme will have the ability to apply the knowledge on Mathematics, Science and Engineering concepts in Complex engineering problems.

PO11:To apply engineering & management principles in their own / team projects in Multidisciplinary environment.

COURSE TEACHING AND LEARNING ACTIVITIES,

Week	Topic	Mode of Delivery
1	Introduction to speech production model, 1D sound waves	Slide presentation and chalk and talk method
2	Vocal tract model, Computation of LPC, Autocorrelation model	Slide presentation and chalk and talk method
3	Levinson- durbin algorithm, Auto co-variance method, Lattice structure, Computation of Lattice co-efficient from LPC	Slide presentation and chalk and talk method
4	Phonetic representation of speech, perception of loudness, Critical bands, pitch perception, Auditory masking	Slide presentation and chalk and talk method
4	Feature extraction of the speech signal :Endpoint detection, Dynamic time warping, Homomorphic filtering	Slide presentation and chalk and talk method
5	LPC, poles of the vocal tract, Pitch frequency, Formant frequencies, Line spectral frequency	Slide presentation and chalk and talk method
6	Cestrum, Spectrogram, Discrete wavelet transformation	Slide presentation and chalk and talk method
7	Pattern recognition for speech detection: Backpropagation Neural network, Support Vector Machine	Slide presentation and chalk and talk method
8	Hidden Markov model, Gaussian Mixture model	Slide presentation and chalk and talk method
8	K-means algorithm and Fuzzy k-means algorithm, K-SOM	and talk method
9	Dimensionality reduction techniques, PCA, LDA, KLDA, ICA	Slide presentation and chalk and talk method
10	Speech compression techniques: DPCM,CELP	Slide presentation and chall and talk method
10	Speech compression techniques: TTS, TTS applications	Slide presentation and chall and talk method

S. No.	Mode of Assessment	Week/Date	Duration	
1	Quiz 1	August last week	1 hour	15%
2.	Quiz 2	October first week	1 hour	15%
3.	Matlab based Assignments	Continous assessment	-	10%
3	Audio slide preparation	First week of November	-	10%
4	End semester exam	Second week of Novemeber	3 hours	50%

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- 1. L.R.Rabiner and R.W.Schafer," Introduction to Digital speech processing", now publishers USA, 2007
- 2. E.S.Gopi, "Digital speech processing using matlab", Springer, 2014.
- 3. Recent literature in Digital speech processing

COURSE EXIT SURVEY

- Self-assessment feedback by the students
 Overall performance of the students in the assessment.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- [1] Copying is strictly not allowed for submitting the project audio slide. However discussion with the peers is allowed.
- [2] Minimum attendance requirement is 75% to write the end semester exam.
- [3] Other policy is as the institute norms.

AL	DI	TIC	NC	AL.	CO	UR	SE	INF	ORMA	AT	101	N

Interaction through piazza (www.piazza.com) is mostly encouraged. On 'Acadly"

FOR SENATE'S CONSIDERATION

Course Faculty 58m CC-Chairperson NFM HOD HOD (DY.E.S.GOP)