Department of Electronics and Communication Engineering

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEMPLATE					
Course Title	ELECTRODYNAMICS AND ELECTROMAGNETIC WAVES				
Course Code	ECPC12		No. of Credits	04	
Department	ECE		Faculty	R.MEENAKSHI	
Pre-requisites Course Code	ECMI12				
Course Coordinator(s) (if, applicable)	Dr.MUTHU CHIDAMBARA NATHAN				
Other Course Teacher(s)/Tutor(s) E-mail	TEMPORARY FACULTY	E-mail/Telephone No.		<u>meenar@nitt.edu</u> 0431-253334	
Course Type	✓ Core course Elective course				
COURSE OVERVIEW					
• To expose the students to the rudiments of electromagnetic theory and wave propagation essential for subsequent courses on Microwave Engineering, Antennas and Wave Propagation and Wireless Communication.					
COURSE OUTCOME (CO)					
At the end of the course students will be able to					
CO1: Recognize and classify the basic Electrostatics theorems, laws and derive them.					
CO2: Discuss the behavior of Electric fields in matter and polarization concepts.					
CO3: Classify the basic magneto static theorems, laws and infer the magnetic properties of matter.					
CO4: Summarize the concept of Electrodynamics & to derive and discuss the Maxwell's Equations.					
CO5: Students are expected to be familiar with Electromagnetic wave propagation and wave propagation.					

COURSE TEACHING AND LEARNING ACTIVITIES				
S.No.	Week	Торіс	Mode of Delivery	
1.	1 st Week 10 th to 14 th July (4 Contact Hours)	 Electrostatics. Coulomb's Law. Gauss's Law & applications. 	Lecture C&T/ PPT or any suitable mode	
2.	2 nd Week 17 th to 21 st July (4 Contact Hours)	Electric potentialPoisons and Laplace Equation		
3.	3 rd Week 24 th to 28 th July (4 Contact Hours)	Method of images.Multi pole Expansion.		
4.	4 th Week 31 st July to 4 th August (4 Contact Hours)	• Electrostatic Fields in matter.	Lecture C&T/ PPT or any suitable mode	
5.	5 th Week 7 th to 11 th August (4 Contact Hours)	 Dielectrics and Electric Polarization. Capacitors with Dielectric substrates. 		
		ASSESMENT I -5 MARKS	ASSIGNMENT	
6.	6 th Week 16 th to 25 th August	 Linear Dielectrics. Force and energy in Dielectric Systems. 		
	(4 Contact Hours)	ASSESMENTS II -20 MARKS	WRITTEN TEST (DESCRIPTIVE)	
7.	7 th Week 28 th to 1 st August	• Magneto- Statics.	Lecture C&T/ PPT or any suitable	

	(4Contact Hours)	Magnetic Field of steady currents.	mode
8.	8 th Week 4 th to 8 th September (4Contact Hours)	• Biot-Savart's and Ampere's Laws.	
9.	9 th Week 4 th to 8 th September (4Contact Hours)	 Magnetic vector potential. Magnetic properties of matter. 	
		ASSESMENT III -5 MARKS	ASSIGNMENT
10.	10 th Week 11 th to 15 th September (4Contact Hours)	 Electrodynamics. Flux rule for motional emf. 	Lecture C&T/ PPT or any suitable mode
11.	11 th Week 18 th to 28 th September (4Contact Hours)	Faraday's Law.Self and mutual inductances.	
12.	12 th Week 2nd to 6 th October (4Contact Hours)	 Maxwell's Equations. Electromagnetic Boundary Conditions. Poynting theorem. 	
		ASSESMENT IV -20 MARKS	WRITTEN TEST (DESCRIPTIVE)
13.	13 th Week 26 th October to 3 rd November	Electrodynamics wave propagation.Uniform plane waves.	Lecture C&T/ PPT or any suitable mode
14.	14 th Week 9 th to 13 th October (4Contact Hours)	Wave polarization.Waves in matter.	
15.	15 th Week 16 th to 26 th October (4Contact Hours)	 Reflection and transmission at boundaries. Propagation in an ionized medium. 	

		WRITTEN EXAM					
COUR	EN SE ASSESSMENT MET	5	WRITTEN TEST (DESCRIPTIVE)				
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage			
1.	ASSESSMENT-I (Assignments)	Offline (not in contact hours)	60 minutes	5			
2.	ASSIGNMENT-II Descriptive type Examinations (First 2units)	3 rd wek of August	60 minutes	20			
3.	Descriptive type Examinations (unit3 &4)	3 rd Week of October	60 minutes	20			
4.	ASSESSMENT-III (Assignments)	Offline (not in contact hours)	-	5			
5.	Compensation Assessment(CPA)	Last Week of October	60 minutes	Please refer Course policy for more details			
6.	Final Assessment (Descriptive type of exam)	Middle of November	180 minutes	50			

ESSENTIAL READINGS :

Text Books:

- 1. D.J.Griffiths, "Introduction to Electrodynamics (3/e)", PHI, 2001
- 2. E.C. Jordan & G. Balmain, "Electromagnetic Waves and Radiating Systems", PHI, 1995.

Reference Books:

- 1. W.H.Hayt, "Engineering Electromagnetics, (7/e)", McGraw Hill, 2006.
- 2. D.K.Cheng, "Field and Wave Electromagnetics, (2/e)", Addison Wesley, 1999.
- 3. M.N.O.Sadiku,"Principles of Electromagnetics, (4/e)", Oxford University Press, 2011.
- 4. N.NarayanaRao, "Elements of Engineering Electromagnetics, (6/e)", Pearson, 2006.
- 5. R.E.Collin, "Foundations for Microwave Engineering (2/e)", McGraw –Hill, 2002.
- 6. R.E.Collin, "Antennas and Radiowave Propagation", McGraw-Hill, 1985.

COURSE EXIT SURVEY

- 1. Feedback from the students during class committee meeting.
- 2. Queries through questionnaire.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

ACCORDANCE:

All the correspondence including Schedule of class, assessment, course material and any other information will be done in class/ over phone/ in faculty room/ through their webmail.

ATTENDANCE:

- Attendance will be taken by the faculty in all the contact hours. Every student should maintain minimum 75% physical attendance in these contact hours along with assessment criteria to attend the end semester examination.
- 2. Any student, who fails to maintain 75% attendance need to appear for the compensation assessment (CPA) .student who scores more than 60% marks in CPA along with assessment criteria will be eligible for attending the end semester examination.
- 3. Those students who have attendance lag and also missed any of the continuous assessments (CAs) can appear for CPA to get eligibility for writing the end semester examination as quoted in Point2.Their scores in the CPA will NOT be taken into account for computing marks for CA.
- 4. Students not having 75% minimum attendance at the end semester and also fail in CPA (scores less than 60%) will have to RE Do the Course.

ACADEMIC HONESTY & PLAGIARISM:

- 1. All the students are expected to be genuine during the course work. Taking of information by means of copying simulations, assignments, looking or attempting to look at another student's paper or bringing and using in any form for copying during any assessments is considered dishonest.
- 2. Tendering of information such as giving one's program, simulation work, assignments to another student to use or copy is also considered dishonest.
- 3. Preventing or hampering other students from pursuing their academic activities is also considered as academic dishonesty.
- 4. Any evidence of such academic dishonesty will result in the loss of marks on the assessment. Additionally, the names of those students so penalized will be reported to the class committee chairperson and H.O.D of the concerned department.
- 5. Students who honestly producing ORIGINAL and OUTSTANDING WORK will be REWARDED.

ADDITIONAL COURSE INFORMATION

The Faculty is available for consultation at times as per the intimation given by the faculty.

FOR SENATE'S CONSIDERATION

Course Faculty & Multho CC-Chairperson B. Maller HOD [R. MEENAKCHI] [B. MALARKODI]