NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Title	Statistical theory of communication (5 th semester ECE)		
Course Code	ECPC19	No. of Credits	4
Department	ECE		Dr. E.S. Gopi
Pre-requisites Course Code	Probability theory and Random process (MA 206)		
Course Coordinator(s) (if, applicable)	-Nil-		
Other Course Teacher(s)/Tutor(s) E-mail	esgopi@nitt.edu	Telephone No.	9500423313
Course Type	Core course		

COURSE OVERVIEW

Information measure. Discrete entropy. Joint and conditional entropies. Uniquely decipherable and instantaneous codes. Kraft-McMillan inequality. Noiseless coding theorem. Construction of optimal codes.

Discrete Memoryless Channel. Mutual information and channel capacity. Shannon's fundamental theorem. Entropy in the continuous case. Shannon-Hartley law.

Binary hypothesis testing. Baye's, minimax and Neyman-Pearson tests. Random parameter estimation-MMSE, MMAE and MAP estimates. Nonrandom parameters – ML estimation.

Coherent signal detection in the presence of additive white and non-white Gaussian noise. Matched filter.

Discrete optimum linear filtering. Orthogonality principle. Spectral factorization. FIR and IIR Wiener filters.

COURSE OBJECTIVES

The subject aims to make the students to understand the statistical theory of telecommunication which are the basics to learn analog and digital telecommunication.

COURSE OUTCOMES (CO)

Course Outcomes (COs)	Aligned Programme Outcomes (POs)
At the end of the course student will be able to	PO1 (High): Post graduates of communication
CO1: show how the information is measured and able to use it for effective coding	engineering programme will demonstrate deep knowledge with an ability
CO2:summarize how the channel capacity is computed for various channels	to discriminate, evaluate, analyze and synthesize existing and new
CO3:use various techniques involved in basic detection and estimation theory to solve the problem	knowledge in telecommunication engineering and the
CO4:summarize the applications of detection theory in telecommunication	related mathematics.
CO5:summarize the application of estimation theory in telecommunication	

COURSE TEACHING AND LEARNING ACTIVITIES

S. No.	Week	Topic	Mode of Delivery
1	1	Information measure. Discrete entropy. Joint and conditional entropies.	Joint and conditional
2	2	Uniquely decipherable and instantaneous codes. Construction of optimal codes	Chalk and talk method
3	2	Kraft-Mcmillan inequality and Noiseless coding theorem.(Flipped class) http://silver.nitt.edu/~esgopi/Videolectures/STATISTICAL THEORY OF COMMUNICATION/Noiselesscodingtheorem.mp4	Problem solving through Think-Pair-Share

10	6	MMSE,MMAE and MAP estimates	Chalk and talk method
11	7	Example for MMSE,MMAE and MAP estimate	Chalk and talk method
12	8	Demonstration for MMSE,MMAE and MAP estimate	Demonstration using LCD projector
12	8	Coherent signal detection in the presence of additive white and non-white Gaussian noise	Chalk and talk method
13	8	Matched filter	Chalk and talk method
14	8	Pre-whitening filter for the Discrete case	Chalk and talk method and followed by demonstration.
15	9	FIR Wiener filter	Chalk and talk method
16	9	FIR Wiener filter demonstration	Demonstration using LCD projector
17	10	IIR Wiener filter	Chalk and talk method
16	10	IIR Wiener filter demonstration	Demonstration using LCD projector

COURSE ASSESSMENT METHODS

S. No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle test 1	August last week	1 hour	15%
2	Cycle test 2	October first week	1 hour	15%
3	Assignment 1 Based on submission of solved problems	Continuous assessment		10%
4	Assignment 2- Audio slide preparation (Illustrations based on the learned	First week of November		10%

				2-12
5	End semester	Second week of	3 hours	50%
	exam	November		

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- [1] R.B.Ash," Information Theory", Wiley, 1965.
- [2] H.V.Poor, "An Introduction to Signal Detection and Estimation, (2/e)", Spring Verlag. 1994.
- [3] J.G.Proakis, D G Manolakis, "Digital Signal Processing", (4/e), Pearson Education, 2007.
- [4] E.S.Gopi, "Digital Signal Processing for Wireless communication using Matlab, Springer publication, 2015

Video lectures:

http://silver.nitt.edu/~esgopi/Videolectures/STATISTICAL THEORY OF COMMUNICATION/

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

Using self-assessment course feedback

Attainment consists of two components

- 1. Fractional number of students those who obtained greater than C grade (50%)
- 2. Self-assessment feedback (50%)

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. Assignment 1 and 2 should be submitted individually (copying is strictly not allowed). Discussion with the class mates are allowed.
- 2. Retest is allowed only for those who missed the Cycle test for the valid reason.
- 3. Penalty for plagiarism, Attendance are as per the general institute policy.

ADDITIONAL COURSE INFORMATION

eg.: Make use of piazza for https://piazza.com/account/login discussion and assignment submission.

FOR SENATE'S CONSIDERATION

Course Faculty 6 CC-Chairperson