NATIONA	AL INSTITUTE OF TECH	NOLOGY, TIRU	CHIRAPPALLI
COURSE OUTLINE TEN	IPLATE	90 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Course Title	Digital speech processing (Elective course) [Along with Final year ECE] EC354		
Course Code	ECPE21	No. of Credits	3
Department	B.Tech, ECE	Faculty	Dr. E. S. Gopi
Pre-requisites Course Code	ECPC15		
Course Coordinator(s) (if, applicable)	Nil		
E-mail	esgopi@nitt.edu	Telephone No.	9500423313
Course Type	Core course	Elective	ourse
COURSE OVERVIEW			
predictive co-efficients (L method-Lattice structure-	PC) -Auto-correlation me	thod-Levinson-du o-efficient from L	the Vocal tract model —Linear urbin algorithm-Auto-co-variance .PC-Phonetic Representation of — Auditory masking.
estimation: Autocorrelation	on approach- Homomorph Iomomorphic approach-L	ic approach-Forr	ic time warping- Pitch frequency mant frequency estimation using co-efficient -Poles of the vocal
		blocks of the e sus frequency	ar- Mel frequency cepstral co- resolution-Discrete wavelet
Machine- Hidden Markov system: K-Means and F reduction techniques: Pr	v Model (HMM)-Gaussiai uzzy K-means clustering	n Mixture Model(- Kohonen self rsis (PCA), Linea	eural Network-Support Vector (GMM) -Unsupervised Learning -organizing map-Dimensionality ar discriminant analysis (LDA),

Non-uniform quantization for Gaussian distributed data- Adaptive quantization-Differential pulse code modulation- Code Exited Linear prediction (CELP)-Quality assessment of the compressed speech signal Text to Speech (TTS) analysis –Evolution of speech synthesis systems-Unit selection methods - TTS Applications.

COURSE OBJECTIVES

The purpose of this course is to explain how DSP techniques could be used for solving problems in speech communication.

COURCE	OUTCOMES	1001
COURSE	OUTCOMES	COI

Course Outcomes	Aligned Programme Outcomes (PO)
At the end of the course student will be able to, CO1: illustrate how the speech production is modeled	PO1
CO2:summarize the various techniques involved in collecting the features from the speech signal in both time and frequency domain.	PO1, PO11
CO3:summarize the functional blocks of the ear	PO1
CO4:compare the various pattern recognition techniques involved in speech and speaker detection	PO1,PO11
CO5: summarize the various speech compression techniques	PO1

PO1: Graduates of Electronics and Communication Engineering Programme will have the ability to apply the knowledge on Mathematics, Science and Engineering concepts in Complex engineering problems.

PO11:To apply engineering & management principles in their own / team projects in Multidisciplinary environment.

COURSE TEACHING AND LEARNING ACTIVITIES

Week	Topic	Mode of Delivery
1	Introduction to speech production model, 1D sound waves	Slide presentation and chalk and talk method
2	Vocal tract model, Computation of LPC, Autocorrelation model	Slide presentation and chalk and talk method
3	Levinson- durbin algorithm, Auto co-variance method, Lattice structure, Computation of Lattice co-efficient from LPC	Slide presentation and chalk and talk method
4	Phonetic representation of speech, perception of loudness, Critical bands, pitch perception, Auditory masking	Slide presentation and chalk and talk method
4	Feature extraction of the speech signal :Endpoint detection, Dynamic time warping, Homomorphic filtering	Slide presentation and chalk and talk method
5	LPC, poles of the vocal tract, Pitch frequency, Formant frequencies, Line spectral frequency	Slide presentation and chalk and talk method
6	Cestrum, Spectrogram, Discrete wavelet transformation	Slide presentation and chalk and talk method
7	Pattern recognition for speech detection: Backpropagation Neural network, Support Vector Machine	Slide presentation and chalk and talk method
8	Hidden Markov model, Gaussian Mixture model	Slide presentation and chalk and talk method
8	K-means algorithm and Fuzzy k-means algorithm, K-SOM	Slide presentation and chalk and talk method
9	Dimensionality reduction techniques, PCA, LDA, KLDA, ICA	Slide presentation and chalk and talk method

FOR SENATE'S CONSIDERA	ION
Course Faculty ffm	CC-Chairperson HOD HOD
(E.S. GOPI)	