Tane many was the	COURSE OUTLINE	e (sassesta)	
Course Title	THERMAL ENGINEERIN	G	
Course Code	EN621	No. of Credits	03
Department	Department of Energy and Environment	Faculty	Dr.V.Gopalakrishnan

Pre-requisites Course Code	Basic Course on Thermodynamics None		
Course Coordinator(s) (if, applicable)			
Other Course Teacher(s) E-mail	None Gopalakrishnan.vgk @gmail.com	phone No	94433 52151
Course Type	Elective		

COURSE OVERVIEW

This course is designed for the post graduate students of Energy Engineering disciplines & intended to familiarize the students with the fundamentals of thermal engineering and their applications.

COURSE OBJECTIVES

The objective of the course will focus on the following points

- 1. To explain the fundamentals of Heat, Work, Energy & their mutual conversion
- 2. To provide knowledge of the various Heat Engines, their characteristics, performance & limitations
- 3. To introduce the concept of Efficiency, Economy & Environmental Impact of Thermal Energy in its various forms & how to extract useful output from heat engines & refrigerators

The student, at the end of the course, should be able • To understand the thermodynamic concepts, followed in the major heat engines • To perform calculations related to their work done & Efficiencies • To understand their various types and relative merits & demerits • To do a reasonable cost-economic analysis • To appreciate the mechanical design behind the engines

COURSE ASSESSMENT METHODS

ACTIVITIES	MARKS ALLOTED	No.of.Groups
BASED	ON ACTIVITIES	
Seminar Presentation	10 Marks	Individually
BASED	ON INTERNALS	
Test-1 (Scheduled)- September end	20 Marks	Individually
Test-2 (Scheduled)- October end	20 Marks	Individually
BASED O	N END SEMESTER	
End Semester	50 Marks	Individually
TOTAL	100 Marks	

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

TEXT BOOKS

- 1. Nag. P.K., "Engineering Thermodynamics", Tata McGraw-Hill Publishing Co., Ltd., 1994
- 2. Moran, Shapiro, Munson and Dewitt, "Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics and Heat Transfer", John Wiley, N. Y 2000
- 3. Sonntag, R.E and Van Wylen, G.J.., "Fundamentals of Thermodynamics", Sixth Edition, 2003.
- 4. Khurmi. R.S, Gupta. J.K, "A textbook of Thermal Engineering", 2002

REFERENCES

- 1. Bacon, D.H., "Engineering Thermodynamics", Butterworth & Co., London, 1989.
- 2. Saad, M.A., "Thermodynamics for Engineers", Prentice-Hall of India Pvt. Ltd., 1989.
- 3. Mayhew, A. and Rogers, B., "Engineering Thermodynamics", Longman Green & Co.Ltd., London, E.L.B.S. 4th Edition, 1994
- 4. Ganesan, Y., Internal Combustion Engines, Tata McGraw-Hill, 2003.
- 5. Heywood, J.B., Fundamentals of Internal Combustion Engines, McGraw-Hill, 1988
- 6. Ballaney, P.L., Thermal Engineering, Khanna Publishers, 1996.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1. Overall Class performance, reflected in pass percentage & the grades obtained
- 2. Student Feed-back

COURSE TEACHING AND LEARNING ACTIVITIES

No 1	Topic Topic	Hours	Mode of D
2	Air Compressor types, working principle	2	Lecture wit
3.	Optimum intermediate pressure for perfect inter cooling.		-do -
4.	Compressor efficiencies and mean effective pressure		-do-
5.	Multi-staging Problems in a line G	1	-do-
6	Problems involving Compressors		Assignm
7	Basic Rankine steam cycle, comparison with Carnot cycle	2	Lecture wit
8	Reheat cycle - Regenerative cycle	2	-do-
9	Efficiencies in steam power plant.	2	-do-
10	Problems involving steam cycles		Assignm
11	Ideal fluid in vapor cycle Binary vapour power cycle	1	Semin
12	Otto cycle - Diesel Cycle - Dual cycle - Comparison	2	Lecture wit
13	Basic, Brayton cycle, intercooling, reheating & regeneration		-do-
14	Aircraft propulsion	1	Semin
15	Problems involving Gas cycles		Assignm
	Refrigerators, Heat pump systems		Lecture wit
16 17	Ideal & actual vapor compression Refrigeration cycle	2	-do-
-	Vapour absorption refrigeration cycle	2	-do-
18	Gas refrigeration cycle, Production of Solid Ice	1	Semin
19	Problems involving Refrigeration		Assignm
20	Principles of operation of Steam Turbines	1	Lecture wit
21	Classification of turbines	2	-do-
22	Velocity, Pressure compounded impulse turbine	2	-do-
23	Turbine velocity diagrams for flow thro turbine blades	1	Semin
24	Steam turbine performance.	1	Semin
2.5	Forces on the blades, work done – Blade or diagram efficiency	1	Semin
6	Problems on Turbine Velocity Diagrams		Assignm
7	Classification of IC Engine components	1	Lecture wit
8	Four stroke cycles, valve timing, Spark ignition	1	-do-
9	Air Fuel Mixture requirements of IC Engines	1	Semin
0	Comparison of two stroke & four stroke Engines	1	Semin
1	Engine power - Indicated power - Break horse power -	1	
2	Engine efficiency - Performance analysis of IC Engine.	1	Semin
3	Problems on IC Engine Performance		Semin
4	Cycle Tests	2	Assignm
	TOTAL - 40 Hrs (Lectures 28 Hrs. Seminars - 10 Hrs. Cycle Tests	2	Test

TOTAL - 40 Hrs (Lectures 28 Hrs, Seminars – 10 Hrs, Cycle Tests - 2 Hrs)

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. Individual topics for Seminars and assignments to prevent copying from each other
- 2. Insistence on proper attendance, as per existing institution policies
- 3. Proper Invigilation during Cycle Tests
- 4. Strict evaluation of Cycle & End Semester Tests

FOR	SENA	TE'S	CONSIL	DERATION

V Gopala kristna Course Faculty ____

CC-Chairperson N.A.A. HOD HOD