

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE PLAN – PART I				
Name of the programme and specialization	B.TECH / CSE			
Course Title	DATA STRUCTURES			
Course Code	CSPC32 No. of Credits 3			
Course Code of Pre- requisite subject(s)	Nil	Semester	111	
Session	July 2021	Section (if, applicable)	Α	
Name of Faculty	Dr. R. Mohan	Department	CSE	
Official Email	rmohan@nitt.edu	Telephone No.	9442421326	
Name of Course Coordinator(s) (if, applicable)	NIL	- ·	_ !	
Official E-mail	NIL	Telephone No.	NIL	
Course Type (please tick appropriately)	Programme Core	· -		

Syllabus (approved in Senate)

Unit – I

Development of Algorithms - Notations and analysis - Storage structures for arrays - Sparse matrices - Stacks and Queues: Representations and applications.

Unit – II

Linked Lists - Linked stacks and queues - Operations on polynomials - Doubly linked lists - Circularly linked lists - Dynamic storage management - Garbage collection and compaction.

Unit – III

Binary Trees - Binary search trees - Tree traversal - Expression manipulation - Symbol table construction - Height balanced trees - Red-black trees- AVL trees.

Unit – IV

Graphs - Representation of graphs - BFS, DFS - Topological sort - Shortest path problems. String representation and manipulations - Pattern matching.

Unit – V

Sorting Techniques - Selection, Bubble, Insertion, Merge, Heap, Quick, and Radix sort - Address calculation - Linear search - Binary search - Hash table methods.

TEXT BOOKS

1. J. P. Tremblay and P. G. Sorenson, "An Introduction to Data Structures with applications", Second Edition, Tata McGraw Hill, 1981

2. M. Tenenbaum and Augestien, "Data Structures using C", Third Edition, Pearson Education 2007.

REFERENCE BOOKS

1. Sartaj Sahni, "Data Structures, Algorithms and Applications in C++", Universities Press (I) Pvt. Ltd.

COURSE OBJECTIVES

1. To understand the various techniques of sorting and searching

2. To design and implement arrays, stacks, queues, and linked lists

3. To understand the complex data structures such as trees and graphs

MAPPING OF COs with POs

Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)
1. Ability to develop programs to implement linear data structures such as stacks, queues, linked lists, etc.	1, 2, 3, 5
2. Ability to apply the concept of trees and graph data structures in real world scenarios	1, 3, 4, 6
3. Ability to comprehend the implementation of sorting and searching algorithms	1, 3, 5, 6

COURSE PLAN – PART II

COURSE OVERVIEW

This course emphasizes linear and nonlinear data structures, various programming paradigms, sorting and searching problems.

COURSE TEACHING AND LEARNING ACTIVITIES			(Add more rows)
S.No.	Contact Hours	Торіс	Mode of Delivery
1	3 Hours	Development of Algorithms, Notations and analysis, Storage structures for arrays	Online Mode
2	3 Hours	Sparse matrices, Stacks: Representations and applications, Queues: Representations and applications,	Online Mode

3	4 Hours	Linked Lists - Linked stacks and queues, Operations on polynomials Doubly linked lists, Circularly linked lists		
4	1 Hour	Dynamic storage management, Garbage collection and Compaction,Online Mo		
		Cycle Test I	Online Mode	
5	4 Hours	Binary Trees, Binary search trees Tree traversal, Expression manipulation	Online Mode	
6	5 Hours	Symbol table construction, Height balanced trees, Red-black trees, AVL treesOnline M		
7	3 Hours	Graphs Representation of graphs - BFS, Online Mo DFS		
8	2 Hours	Topological sort, Shortest path problems Online Mo		
9	3 Hours	String representation and manipulations, Pattern matching		
		Cycle Test II	Online Mode	
10	2 Hours	Sorting Techniques - Selection, Bubble sort	nniques - Selection, Online Mode	
11	1 Hour	Insertion, Merge sort	Online Mode	
12	2 Hours	Heap, Quick sort Radix sort	Online Mode	

13	1 Hour	Linear search, Binary search			Online Mode	
14	2 Hours	Address calculation. Hash table methods			(Online Mode
15	1 Hour	Doubts Clarification			(Online Mode
COURSE ASSESSMENT METHODS (shall range from 4 to 6)						
S.No.	Mode of Assessment		Week/Date	Durati	on	% Weightage
1	Cycle Test 1		06/09/2021 to 08/09/2021	1 Hour		25
2	Cycle Test 2		06/10/2021 to 08/10/2021	1 Hour		25
3	Programming Assignment -1		25/09/2021 to 02/10/2021	-		10
4	Programming Assignment -2		29/10/2020 to 8/11/2020	-		10
СРА	Compensation Assessment*		26/11/2020 to 01/12/2020	1 Hour		20
5	Final Assessment *		As per academic schedule	2 hou	rs	30
*mandatory; refer to guidelines on page 4						

manuatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Students' feedback through PAC meetings
- 2. Feedbacks are collected before final examination through MIS or any other standard format followed by the institute
- 3. Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addressed.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Email / Phone

COMPENSATION ASSESSMENT POLICY

- 1. One compensation assessment will be given after completion of Cycle Test 1 and 2 for the students those who are absent for any assessment due to genuine reason.
- 2. Compensatory assessments would cover the syllabus of Cycle tests 1 & 2
- 3. The prior permission and required documents must be submitted for absence signed by HoD/CSE.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

- **1.** The Course Coordinator is available for consultation during the time intimated to the students then and there
- **2.** Relative grading adhering to the instructions from the office of the Dean (Academic) will be adopted for the course.

FOR APPROVAL		
Course : Faculty	CC- Chairperson:	HOD:
(Dr. R. Mohan)	(Dr. S. Mary Saira Bhanu)	(Dr. Rajeswari Sridhar)