

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE PLAN – PART I				
Name of the programme and specialization	B.TECH / CSE			
Course Title	Deep Learning			
Course Code	CSHO23	No. of Credits	3	
Course Code of Pre-requisite subject(s)	-	Semester	VI & VIII	
Session	July / January 2021	Section (if, applicable)	A & B	
Name of Faculty	Dr. Bala Krishnan R	Department	CSE	
Official Email	balakrishnan@nitt.edu	Telephone No.	-	
Name of Course Coordinator(s) (if, applicable)	NIL			
Official E-mail	NIL	Telephone No.	NIL	
Course Type (please tick appropriately)	Honors Course			

Syllabus (Approved in Senate)

UNIT - I DEEP NETWORKS

Deep Feedforward Networks - Learning XOR, Gradient Based learning, Hidden Units, Backpropagation and other Differential Algorithms, Regularization for Deep Learning, Optimization for training Deep Models.

UNIT - II CONVOLUTIONAL NETWORKS

Convolution operation, Motivation, Pooling, Convolution and Pooling as strong prior, Efficient convolution algorithms, Unsupervised features, Sequence Modeling: Recurrent and Recursive Nets, LSTM Networks, Applications - Computer Vision, Speech Recognition, Natural Language Processing.

UNIT - III LINEAR FACTOR MODELS

Probabilistic PCA and Factor Analysis, Independent Component Analysis (ICA), Autoencoders-Regularized Autoencoders, Representational Power, Layer size and Depth, Stochastic Autoencoders, Applications.

UNIT - IV REPRESENTATION LEARNING

Greedy Layerwise Unsupervised Pre-Training, Transfer learning and Domain Adaptation, Deep Generative Models.

UNIT - V DEEP LEARNING WITH PYTHON

Introduction to Keras and Tensorflow, Deep Learning for computer vision - convnets, Deep

Learning for Text and Sequences, Generative Deep Learning - Text Generation with LSTM, DeepDream, Neural Style Transfer, Generating images with variational autoencoders, Generative Adversarial Networks (GAN).

COURSE OBJECTIVES

- 1. To introduce building blocks of deep neural network architecture.
- 2. To learn deep learning algorithms and its problem settings.
- 3. To understand representation and transfer of knowledge using deep learning.
- 4. To learn to use deep learning tools and framework for solving real-life problems.
- 5. To use Python for Deep Learning.

MAPPING OF COs with POs

Cours	e Outcomes	Programme Outcomes (PO) (Enter Numbers only)
1.	Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains	2, 3
2.	Incorporate transfer of knowledge in machine learning algorithms	2
3.	Implement deep learning algorithms and solve real-world problems	3, 5, 6
4.	Develop Deep Learning techniques using Python	3, 4, 6
5.	Represent learning Models	3

COURSE PLAN – PART II

COURSE OVERVIEW

This course covers data sciences, focusing on various concepts of machine learning. It provides details about some of the well-known supervised and unsupervised learning algorithms.

COURSE	E TEACHING AND LE	(Add more rows)	
SI. No.	Week/Contact Hours	Торіс	Mode of Delivery
1	19.01.2021 to 22.01.2021 1 hour	UNIT I: DEEP NETWORKS	Online (MS Teams)
2	19.01.2021 to 22.01.2021 1 hour	Deep Feedforward Networks	Online (MS Teams)
3	25.01.2021 to 29.01.2021 1 hour	Learning XOR	Online (MS Teams)

4	19.01.2021 to 22.01.2021 1 hour	Gradient Based learning	Online (MS Teams)
5	19.01.2021 to 22.01.2021 1 hour	Hidden Units	Online (MS Teams)
6	01.02.2021 to 05.02.2021 1 hour	Back-propagation and other Differential Algorithms	Online (MS Teams)
7	01.02.2021 to 05.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
8	01.02.2021 to 05.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
9	08.02.2021 to 12.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
10	08.02.2021 to 12.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
11	08.02.2021 to 12.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
12	15.02.2021 to 19.02.2021 1 hour	Optimization for training Deep Models	Online (MS Teams)
13	15.02.2021 to 19.02.2021 1 hour	Optimization for training Deep Models	Online (MS Teams)
14	15.02.2021 to 19.02.2021 1 hour	Optimization for training Deep Models	Online (MS Teams)
15	22.02.2021 to 26.02.2021 1 hour	Cycle Test 1	
16	01.03.2021 to 05.03.2021 1 hour	UNIT II: CONVOLUTIONAL NETWORKS	Online (MS Teams)

17	01.03.2021 to 05.03.2021 1 hour	Convolution operation, Motivation, Pooling	Online (MS Teams)
18	01.03.2021 to 05.03.2021 1 hour	Convolution and Pooling as strong prior, Efficient convolution algorithms, Unsupervised features	Online (MS Teams)
19	08.03.2021 to 12.03.2021 1 hour	Sequence Modeling:Recurrent and Recursive Nets, LSTM Networks	Online (MS Teams)
20	08.03.2021 to 12.03.2021 1 hour	Applications - Computer Vision, Speech Recognition, Natural Language Processing	Online (MS Teams)
21	08.03.2021 to 12.03.2021 1 hour	UNIT III: LINEAR FACTOR MODELS	Online (MS Teams)
22	15.03.2021 to 19.03.2021 1 hour	Probabilistic PCA and Factor Analysis, Independent Component Analysis (ICA), Autoencoders- Regularized Autoencoders	Online (MS Teams)
23	15.03.2021 to 19.03.2021 1 hour	Representational Power, Layer size and Depth	Online (MS Teams)
24	15.03.2021 to 19.03.2021 1 hour	Stochastic Autoencoders, Applications	Online (MS Teams)
25	22.03.2021 to 26.03.2021 1 hour	Cycle Test 2	
26	30.03.2021 to 02.04.2021 1 hour	UNIT IV: Representation Learning	Online (MS Teams)
27	30.03.2021 to 02.04.2021 1 hour	Greedy Layerwise Unsupervised Pre- Training	Online (MS Teams)
28	05.04.2021 to 09.04.2021 1 hour	Transfer learning and Domain Adaptation	Online (MS Teams)

29	05.04.2021 to 09.04.2021 1 hour	Deep Generative Models	Online (MS Teams)
30	05.04.2021 to 09.04.2021 1 hour	Deep Generative Models	Online (MS Teams)
31	12.04.2021 to 16.04.2021 1 hour	Deep Generative Models	Online (MS Teams)
32	12.04.2021 to 16.04.2021 1 hour	UNIT V: DEEP LEARNING WITH PYTHON	Online (MS Teams)
33	12.04.2021 to 16.04.2021 1 hour	Introduction to Keras and Tensorflow, Deep Learning for computer vision - Convnets	Online (MS Teams)
34	19.04.2021 to 23.04.2021 1 hour	Deep Learning for Text and Sequences	Online (MS Teams)
35	19.04.2021 to 23.04.2021 1 hour	Deep Learning for Text and Sequences	Online (MS Teams)
36	19.04.2021 to 23.04.2021 1 hour	Generative Deep Learning - Text Generation with LSTM, DeepDream	Online (MS Teams)
37	26.04.2021 to 30.04.2021 1 hour	Neural Style Transfer, Generating images with variational autoencoders	Online (MS Teams)
38	26.04.2021 to 30.04.2021 1 hour	Neural Style Transfer, Generating images with variational autoencoders	Online (MS Teams)
39	26.04.2021 to 30.04.2021 1 hour	Generative Adversarial Networks (GAN)	Online (MS Teams)
40	03.05.2021 to 07.05.2021 1 hour	Generative Adversarial Networks (GAN)	Online (MS Teams)

5

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

41	03.05.2021 to 07.05.2021 1 hour	Generative Adversarial Networks (GAN)			Onl	ine (MS Teams)
42	03.05.2021 to 07.05.2021 1 hour	Generative Adversarial Networks (GAN)		Onl	ine (MS Teams)	
COURSE	COURSE ASSESSMENT METHODS (shall range from 4 to 6)					
SI. No.	Mode of Assessment		Week/Date	Duratio	on	% Weightage
1	Cycle Test 1			1 hou	r	20
2	Cycle Test 2		As per academic schedule	1 hou	r	20
3	Assignment 1		Feb 4 th Week	-		15
4	Assignment 2		Mar 4 th Week	-		15
СРА	Compensation Asse	ssment*	As per academic			

*mandatory; refer to guidelines on page 4

Final Assessment*

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Students' feedback through PAC meetings
- 2. Feedbacks are collected before final examination through MIS or any other standard format followed by the institute

schedule

2 hours

30

3. Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addressed.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Email, in-person – after 4.00 pm.

COMPENSATION ASSESSMENT POLICY

- 1. One compensation assessment will be given after completion of Cycle Test 1 and 2 for the students those who are absent for any assessment due to genuine reason.
- 2. Compensatory assessments would cover the syllabus of Cycle tests 1 & 2
- 3. The prior permission and required documents must be submitted for absence signed by HoD/CSE.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

TEXT BOOK

1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", The MIT Press, 2016.

REFERENCE BOOKS

- 1. Francois Chollet, "Deep Learning with Python", Manning Publications, 2017.
- 2. AurélienGéron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", O'Reilly Media; 1 edition (April 9, 2017).
- 3. Josh Patterson, "Deep Learning: A Practitioner's Approach", O'Reilly Media; 1 edition.
- 1. The Course Coordinator is available for consultation during the time intimated to the students then and there.
- 2. Relative grading adhering to the instructions from the office of the Dean (Academic) will be adopted for the course.

FOR APPROVAL

Course Faculty _____ CC-Chairperson _____ HOD

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE PLAN – PART I				
Name of the programme and specialization	B.TECH / CSE			
Course Title	Deep Learning			
Course Code	CSHO23	No. of Credits	3	
Course Code of Pre-requisite subject(s)	-	Semester	VI & VIII	
Session	July / January 2021	Section (if, applicable)	A & B	
Name of Faculty	Dr. Bala Krishnan R	Department	CSE	
Official Email	balakrishnan@nitt.edu	Telephone No.	-	
Name of Course Coordinator(s) (if, applicable)	NIL			
Official E-mail	NIL	Telephone No.	NIL	
Course Type (please tick appropriately)	Honors Course			

Syllabus (Approved in Senate)

UNIT - I DEEP NETWORKS

Deep Feedforward Networks - Learning XOR, Gradient Based learning, Hidden Units, Backpropagation and other Differential Algorithms, Regularization for Deep Learning, Optimization for training Deep Models.

UNIT - II CONVOLUTIONAL NETWORKS

Convolution operation, Motivation, Pooling, Convolution and Pooling as strong prior, Efficient convolution algorithms, Unsupervised features, Sequence Modeling: Recurrent and Recursive Nets, LSTM Networks, Applications - Computer Vision, Speech Recognition, Natural Language Processing.

UNIT - III LINEAR FACTOR MODELS

Probabilistic PCA and Factor Analysis, Independent Component Analysis (ICA), Autoencoders-Regularized Autoencoders, Representational Power, Layer size and Depth, Stochastic Autoencoders, Applications.

UNIT - IV REPRESENTATION LEARNING

Greedy Layerwise Unsupervised Pre-Training, Transfer learning and Domain Adaptation, Deep Generative Models.

UNIT - V DEEP LEARNING WITH PYTHON

Introduction to Keras and Tensorflow, Deep Learning for computer vision - convnets, Deep

Learning for Text and Sequences, Generative Deep Learning - Text Generation with LSTM, DeepDream, Neural Style Transfer, Generating images with variational autoencoders, Generative Adversarial Networks (GAN).

COURSE OBJECTIVES

- 1. To introduce building blocks of deep neural network architecture.
- 2. To learn deep learning algorithms and its problem settings.
- 3. To understand representation and transfer of knowledge using deep learning.
- 4. To learn to use deep learning tools and framework for solving real-life problems.
- 5. To use Python for Deep Learning.

MAPPING OF COs with POs

Cours	e Outcomes	Programme Outcomes (PO) (Enter Numbers only)
1.	Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains	2, 3
2.	Incorporate transfer of knowledge in machine learning algorithms	2
3.	Implement deep learning algorithms and solve real-world problems	3, 5, 6
4.	Develop Deep Learning techniques using Python	3, 4, 6
5.	Represent learning Models	3

COURSE PLAN – PART II

COURSE OVERVIEW

This course covers data sciences, focusing on various concepts of machine learning. It provides details about some of the well-known supervised and unsupervised learning algorithms.

COURSE	E TEACHING AND LE	(Add more rows)	
SI. No.	Week/Contact Hours	Торіс	Mode of Delivery
1	19.01.2021 to 22.01.2021 1 hour	UNIT I: DEEP NETWORKS	Online (MS Teams)
2	19.01.2021 to 22.01.2021 1 hour	Deep Feedforward Networks	Online (MS Teams)
3	25.01.2021 to 29.01.2021 1 hour	Learning XOR	Online (MS Teams)

4	19.01.2021 to 22.01.2021 1 hour	Gradient Based learning	Online (MS Teams)
5	19.01.2021 to 22.01.2021 1 hour	Hidden Units	Online (MS Teams)
6	01.02.2021 to 05.02.2021 1 hour	Back-propagation and other Differential Algorithms	Online (MS Teams)
7	01.02.2021 to 05.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
8	01.02.2021 to 05.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
9	08.02.2021 to 12.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
10	08.02.2021 to 12.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
11	08.02.2021 to 12.02.2021 1 hour	Regularization for Deep Learning	Online (MS Teams)
12	15.02.2021 to 19.02.2021 1 hour	Optimization for training Deep Models	Online (MS Teams)
13	15.02.2021 to 19.02.2021 1 hour	Optimization for training Deep Models	Online (MS Teams)
14	15.02.2021 to 19.02.2021 1 hour	Optimization for training Deep Models	Online (MS Teams)
15	22.02.2021 to 26.02.2021 1 hour	Cycle Test 1	
16	01.03.2021 to 05.03.2021 1 hour	UNIT II: CONVOLUTIONAL NETWORKS	Online (MS Teams)

17	01.03.2021 to 05.03.2021 1 hour	Convolution operation, Motivation, Pooling	Online (MS Teams)
18	01.03.2021 to 05.03.2021 1 hour	Convolution and Pooling as strong prior, Efficient convolution algorithms, Unsupervised features	Online (MS Teams)
19	08.03.2021 to 12.03.2021 1 hour	Sequence Modeling:Recurrent and Recursive Nets, LSTM Networks	Online (MS Teams)
20	08.03.2021 to 12.03.2021 1 hour	Applications - Computer Vision, Speech Recognition, Natural Language Processing	Online (MS Teams)
21	08.03.2021 to 12.03.2021 1 hour	UNIT III: LINEAR FACTOR MODELS	Online (MS Teams)
22	15.03.2021 to 19.03.2021 1 hour	Probabilistic PCA and Factor Analysis, Independent Component Analysis (ICA), Autoencoders- Regularized Autoencoders	Online (MS Teams)
23	15.03.2021 to 19.03.2021 1 hour	Representational Power, Layer size and Depth	Online (MS Teams)
24	15.03.2021 to 19.03.2021 1 hour	Stochastic Autoencoders, Applications	Online (MS Teams)
25	22.03.2021 to 26.03.2021 1 hour	Cycle Test 2	
26	30.03.2021 to 02.04.2021 1 hour	UNIT IV: Representation Learning	Online (MS Teams)
27	30.03.2021 to 02.04.2021 1 hour	Greedy Layerwise Unsupervised Pre- Training	Online (MS Teams)
28	05.04.2021 to 09.04.2021 1 hour	Transfer learning and Domain Adaptation	Online (MS Teams)

29	05.04.2021 to 09.04.2021 1 hour	Deep Generative Models	Online (MS Teams)
30	05.04.2021 to 09.04.2021 1 hour	Deep Generative Models	Online (MS Teams)
31	12.04.2021 to 16.04.2021 1 hour	Deep Generative Models	Online (MS Teams)
32	12.04.2021 to 16.04.2021 1 hour	UNIT V: DEEP LEARNING WITH PYTHON	Online (MS Teams)
33	12.04.2021 to 16.04.2021 1 hour	Introduction to Keras and Tensorflow, Deep Learning for computer vision - Convnets	Online (MS Teams)
34	19.04.2021 to 23.04.2021 1 hour	Deep Learning for Text and Sequences	Online (MS Teams)
35	19.04.2021 to 23.04.2021 1 hour	Deep Learning for Text and Sequences	Online (MS Teams)
36	19.04.2021 to 23.04.2021 1 hour	Generative Deep Learning - Text Generation with LSTM, DeepDream	Online (MS Teams)
37	26.04.2021 to 30.04.2021 1 hour	Neural Style Transfer, Generating images with variational autoencoders	Online (MS Teams)
38	26.04.2021 to 30.04.2021 1 hour	Neural Style Transfer, Generating images with variational autoencoders	Online (MS Teams)
39	26.04.2021 to 30.04.2021 1 hour	Generative Adversarial Networks (GAN)	Online (MS Teams)
40	03.05.2021 to 07.05.2021 1 hour	Generative Adversarial Networks (GAN)	Online (MS Teams)

5

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

41	03.05.2021 to 07.05.2021 1 hour	Generative Adversarial Networks (GAN)				Online (MS Teams)		
42	03.05.2021 to 07.05.2021 1 hour	Generative Adversarial Networks (GAN)			Online (MS Teams)			
COURSE ASSESSMENT METHODS (shall range from 4 to 6)								
SI. No.	Mode of Assessment		Week/Date	Duration		% Weightage		
1	Cycle Test 1			er academic chedule 1 hour		20		
2	Cycle Test 2		As per academic schedule			20		
3	Assignment 1		Feb 4 th Week	-		15		
4	Assignment 2		Mar 4 th Week	-		15		
СРА	Compensation Asses	ssment*	As per academic					

*mandatory; refer to guidelines on page 4

Final Assessment*

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Students' feedback through PAC meetings
- 2. Feedbacks are collected before final examination through MIS or any other standard format followed by the institute

schedule

2 hours

30

3. Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addressed.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Email, in-person – after 4.00 pm.

COMPENSATION ASSESSMENT POLICY

- 1. One compensation assessment will be given after completion of Cycle Test 1 and 2 for the students those who are absent for any assessment due to genuine reason.
- 2. Compensatory assessments would cover the syllabus of Cycle tests 1 & 2
- 3. The prior permission and required documents must be submitted for absence signed by HoD/CSE.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

TEXT BOOK

1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", The MIT Press, 2016.

REFERENCE BOOKS

- 1. Francois Chollet, "Deep Learning with Python", Manning Publications, 2017.
- AurélienGéron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", O'Reilly Media; 1 edition (April 9, 2017).
- 3. Josh Patterson, "Deep Learning: A Practitioner's Approach", O'Reilly Media; 1 edition.
- 1. The Course Coordinator is available for consultation during the time intimated to the students then and there.
- .2. Relative grading adhering to the instructions from the office of the Dean (Academic) will be adopted for the course.

FOR APPROVAL

Course Faculty _____ CC-Chairperson

_HOD The