DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLA	N – PART I	
Name of the programme and specialization	M.Tech Computer Scie	ence and Engineerin	g
Course Title	ADVANCED DATA ST	RUCTURES AND	ALGORITHMS
Course Code	CS603	No. of Credits	3
Course Code of Pre- requisite subject(s)	NIL		
Session	July 2020	Section (if, applicable)	A/B
Name of Faculty	Rajeswari Sridhar	Department	Computer Science and Engineering
Email	srajeswari@nitt.edu	Telephone No.	
Name of Course Coordinator(s) (if, applicable)			
E-mail		Telephone No.	
Course Type	v Core course	Elective cou	Irse

Syllabus (approved in BoS)

2019

Unit I Analysis Of Algorithms Review of order of growth of functions, recurrences, probability distributions, Average case analysis of algorithms, Randomized Algorithms – Analysis - NP – Complete and NP – Hard Problems – Amortized Analysis

Unit II Heaps Min Heap – Min-max Heaps – Deaps – Leftist heaps – Skew leftist heaps – Binomial Heaps – Lazy binomial heaps – Fibonacci Heaps.

Unit III Trees AVL Trees – Red-Black Trees – Splay Trees - B trees - Multi-way search trees –Tries

Unit IV Advanced Tree Structures Point – trees – Quad trees - K-d trees – TVtrees – Segment trees – Static and Dynamic

Unit V Geometric algorithms – line segment intersection – Map overlay detection – Voronoi diagram

COURSE OBJECTIVES

- To introduce and practice advanced algorithms and programming techniques necessary for developing sophisticated computer application programs
- To get accustomed with various programming constructs such as divide-and-conquer, backtracking, and dynamic programming.

- To understand and use various data structures in applications
- To learn new techniques for solving specific problems more efficiently and for analyzing space and time requirements.

COURSE OUTCOMES (CO)	
Course Outcomes	Aligned Programme Outcomes (PO)
1. Familiarize with algorithmic techniques such as brute force, greedy, and divide and conquer	PO ₁ , PO ₃ , PO ₅ , PO ₆
2. Apply advanced abstract data type (ADT) and data structures in solving real world problems.	PO ₁ , PO ₃ , PO ₄ , PO ₅ , PO ₆
3. Analyze and apply graph data structure to real-life problems	PO_1 , PO_3 , PO_5 , PO_6
4. Effectively combine fundamental data structures and algorithmic techniques in building a complete algorithmic solution to a given problem	PO ₁ , PO ₂ , PO ₃ , PO ₅

COURSE PLAN – PART II

COURSE OVERVIEW

This course covers the advanced topics in Data structures including advanced heaps, advanced trees, tree structures that are used for Multimedia data and for geometric algorithms. Multimedia datastructures will have a different perspective to search algorithms. Geometric algorithms will cover the problems related to finding line intersections, map intersections, etc., Algorithms strategies, algorithms analysis, asymptotic notations, randomized algorithms will also be discussed.

COURS	SE TEACHING AND LEARNING ACTIVITIES		
S.No.	Week/Contact Hours	Торіс	Mode of Delivery
			Online through MS Teams
	15/9/2020 to	Unit1: Introduction to	Lecture
1	18/9/2020	Algorithms, Need for Analysis,	
		design strategies, Asymptotic	Pen and Talk and Power
	2 hours	notations	point presentation
	21/9/2020 to	Asymptotic notations,	Lecture
0	25/9/2020	problems, solving recurrences,	
		Tree, iterative, substitution	Pen and Talk and Power
	3 hours	method and masters method	point presentation
	28/9/2020 to	Algebraic method, Randomized	Lecture
2	02/10/2020	algorithms, amortized analysis	
3			Pen and Talk and Power
	3 hours		point presentation
	05/10/2020 to	NP problems – NP complete and	Lecture
1	09/10/2020	NP hard, Unit 2: BST, AVL	
4	. ,	Trees – Insert, Delete, Search,	Pen and Talk and Power

	3 hours	Red Black trees – Insert	point presentation
5	12/10/2020 to	Red Black trees – Delete,	Lecture
	10/10/2020	Insert, delete, traverse, B Trees	Pen and Talk and Power
	3 hours		point presentation
	19/10/2020 to	B Trees – Insert, Delete,	Lecture
6	23/10/2020	Analysis, applications, Multiway	Don and Talk and Dower
	3 hours	and non-binary, analysis	point presentation
	26/10/2020 to	Cycle Test 1	Lecture
7	30/10/2020		Pen and Talk and Power
_	2 hours	Unit 3: Heaps, Min heaps, Min-	point presentation
	$\frac{02}{11}$ $\frac{02}{11}$ $\frac{12}{2020}$ to	deaps Insert Delete	Lecture
0	06/11/2020	operations, analysis Leftist	
0		heaps, Skew leftist heaps -	Pen and Talk and Power
	3 hours	insert, delete, traverse, analysis	point presentation
	13/11/2020 to $13/11/2020$	Binomial heaps, Fibonacci Heaps, proof – Insert, Delete	Lecture
9		traverse. Unit 4: Point trees,	Pen and Talk and Power
	3 hours	Quad trees – Insert, Delete,	point presentation
	16/11/0000 to	traverse	T a atruma
	10/11/2020 to $20/11/2020$	TV trees – insert delete range	Lecture
10		query, Segment trees	Pen and Talk and Power
	3 hours		point presentation
	23/11/2020 to	Segment trees – range query,	Lecture
11	27/11/2020	Unit 5: Geometric algorithms	Pen and Talk and Power
	3 hours		point presentation
	30/11/2020 to	Line segment intersection	Lecture
12	04/12/2020		Pen and Talk and Power
	2 hours		point presentation
	07/12/2020 to	Map overlay identification,	Lecture
12	11/12/2020	voronoi diagram.	Dere and Tralle and Decuse
	3 hours		point presentation
	14/12/2020 to	Voronoi diagram, construction	Lecture
13	18/12/2020		
	2 h		Pen and Talk and Power
Text B	ondes		point presentation

H. S. Wilf, Algorithms and complexity, Prentice hall.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, Prentice hall.

Reference books

- 1. Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, "Computational Geometry Algorithms and Applications", Third Edition, Springer, 2011
- 2. V. Subrahmanyam, "Principles of Multimedia Database systems", Elsevier, 2008
- **3.** Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Universities Press, 2008

COURSE ASSESSMENT METHODS (shall range from 4 to 6)				
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle Test 1	26/10/2020 to 30/10/2020	1 hour	15
2	Weekly assessments – Class surprise quizzes		3 hours	15
3	Programming Assessment		2 hours	20
4	Assignment Problems	Periodically	4 hours	20
СРА	Compensation Assessment*	After completion of Weekly assessments	1 hour	15
5	Final Assessment *	As per academic schedule	As per institute norms	30

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Students' feedback through class committee meetings
- 2. Feedbacks are collected before final examination through MIS or any other standard format followed by the institute
- 3. Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addressed.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Email

COMPENSATION ASSESSMENT POLICY

1. One compensation assessment will be given towards the end of the semester for the students those who are absent for Cycle Test 1 due to genuine reason.

- 2. Surprise Tests will have extra components to compensate for the missed surprise tests.
- 3. Compensatory assessments would cover the syllabus of 4 units.
- 4. The prior permission and required document must be submitted for absence.

<u>ATTENDANCE POLICY</u> (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

- 1. The Course Coordinator is available for consultation during the time intimated to the students then and there.
- 2. Relative grading adhering to the instructions from the office of the Dean (Academic) will be adopted for the course.

FOR APPROVAL

Course Faculty _

CC-Chairperson

R. Leele HC