

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE PLAN – PART I			
Name of the programme and specialization	B.Tech and CSE		
Course Title	MICROPROCESSORS AND MICROCONTROLLERS		
Course Code	CSPC36	No. of Credits	3
Course Code of Pre- requisite subject(s)	CSPC22	Semester	VI
Session	January 2020	Section (if, applicable)	Α
Name of Faculty	Ms.A.Lavanya Mathiyalagi	Department	CSE
Official Email	lavanyaa@nitt.edu	Telephone No.	0431-2502202
Name of Course Coordinator(s) (if, applicable)	-		
Official E-mail	-	Telephone No.	-
Course Type	✓ Core course	Elective course	
Syllabus (approved in	Senate)		
Unit – I	•		

THE 8086 Microprocessor: Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

Unit - II

8086 System Bus Structure: 8086 signals – Basic configurations – System bus timing – System design using 8086 – IO programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, Closely coupled and loosely Coupled configurations – Introduction to advanced processors.

Unit - III

Microcontroller: Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes -Programming 8051 Timers – Interfacing Microcontroller -Serial Port Programming - Interrupts Programming – LCD & Keyboard - External Memory Interface- Stepper Motor.

Unit – IV Introduction to Embedded Systems: Complex systems and microprocessors– Embedded system design process – Instruction sets preliminaries - ARM Processor – CPU: programming input and output supervisor mode, exceptions and traps – Co-processors– Memory system mechanisms – CPU performance

Unit – V Embedded Computing Platform Design and Optimization: The CPU Bus-Memory devices and systems—Designing with computing platforms – platform-level performance analysis - Components for embedded programs-Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Analysis and optimization of program size- Program validation and testing.

Text Books

- 1. Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design", Second Edition, Prentice Hall of India, 2007
- 2. Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", 2nd Edition, Pearson Education, 2011
- 3. Marilyn Wolf, "Computers as Components Principles of Embedded Computing System Design", 3rd Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2012

COURSE OBJECTIVES

- > To understand the concepts of Architecture of 8086 microprocessor
- > To understand the design aspects of I/O and Memory Interfacing circuits
- To understand the architecture and programming of ARM processor

MAPPING OF COs with POs

Course Outcomes	Programme Outcomes (PO)
Ability to design and implement programs on 8086	
microprocessor	1,3,6
2. Ability to design I/O circuits and Memory Interfacing circuits	1,3,6
3. Ability to design and develop components of ARM processor	1,3,6

COURSE PLAN - PART II

COURSE OVERVIEW

- ➤ Microprocessors are used extensively in the design of any computing facility. It contains units to carry out arithmetic and logic calculations, fast storage in terms of registers and associated control logic to get instructions from memory and execute them. A number of devices can be interfaced with them to develop a complete system application.
- ➤ Microcontrollers are single chip computers, integrating processor, memory and other peripheral modules into a single System-on-Chip (SoC). Apart from input-output ports, the peripherals often include timers, data converters, communication modules, and so on.

COURS	COURSE TEACHING AND LEARNING ACTIVITIES				
S.No.	Week/Contact Hours	Topic	Mode of Delivery		
			Presentation,Ch		
1	Week 1	Introduction to 8086 and architecture	alk & Talk		
	Week 1		Presentation,Ch		
2		Addressing modes	alk & Talk		
			Presentation,Ch		
	Week 1	Instruction set and assembler directives	alk & Talk		
3		mandellon act and assembler directives	Presentation,Ch		
4			alk & Talk		
	Week 2	Assembly language programming	aik a raik		
			Presentation,Ch		
_	Week 2	Modular Programming	alk & Talk		
5		Modular Programming	Presentation,Ch		
6	Week 2	Linking and Relocation, Stacks	alk & Talk		
6		Linking and Relocation, Stacks	Presentation,Ch		
7	Week 3	Procedures AND Macros	alk & Talk		
		1 Toccures 7 (14) Macros	Presentation,Ch		
8	Week 3	Interrupts and interrupt service routines	alk & Talk		
	Week 3	interior and interior and interior	Presentation,Ch		
9	vveek 3	Byte and String Manipulation	alk & Talk		
			Presentation,Ch		
10	Week 4	8086 signals AND Basic configurations	alk & Talk		
	Week 4	System bus timing, System design using	Presentation,Ch		
11		8086	alk & Talk		
			Presentation,Ch		
40	Week 4	IO programming	alk & Talk		
12		10 programming	Drocontation Ch		
			Presentation,Ch alk & Talk		
13	Week 5	Introduction to Multiprogramming	ain a lain		
	-		Presentation,Ch		
	Week 5	Overtone Bore Of	alk & Talk		
14	_	System Bus Structure	Duna a susta di a sa Ci		
,_	Week 5	Multipropopor configurations	Presentation,Ch		
15		Multiprocessor configurations	alk & Talk		
40	\\\\ \- 0	Coprocessor, Closely coupled and loosely Coupled configurations	Presentation,Ch alk & Talk		
16	Week 6	Coupled configurations	Presentation,Ch		
17	Mook 6	Introduction to advanced processors.	alk & Talk		
17	Week 6	introduction to advanced processors.	Presentation,Ch		
18	Week 6	Architecture of 8051	alk & Talk		
10	VVEEK O	7.110111100101101011	an a rain		

Presentation,Ch alk & Talk
Presentation,Ch
alk & Talk
Presentation,Ch
alk & Talk
Presentation,Ch
alk & Talk
aik & Taik
Presentation,Ch
alk & Talk
Presentation,Ch
alk & Talk
Presentation,Ch
alk & Talk
Presentation,Ch
alk & Talk
Presentation,Ch
alk & Talk
Presentation
Presentation
Presentation
Presentation
Presentation
Presentation
Presentation
Presentation
F a F a F

		Program level performance analysis,	
40	Week 14	Software performance optimization	Presentation
		Analysis and optimization of program size,	
41	Week 14	Program validation and testing	Presentation

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle Test-1	As Per Schedule	1 hour	20
2	Cycle Test-2	As Per Schedule	1 hour	20
3	Assignment	1st week of April	2 weeks	10
СРА	Compensation Assessment	2nd week of April	1 hour	20
4	Final Assessment *	As Per Schedule	3hours	50

*Mantotary

COURSE EXIT SURVEY

- Feedback is collected before every cycle test and after the end semester exam in the feedback forms through MIS.
- Suggestions from the students for incorporated for making the course more understanding and interesting.
- > Students, through their class representative may give their feedback at any time to the course faculty which will be duly addresses.
- > Students may also give their feedback during class committee meeting.

COURSE POLICY

MODE OF CORRESPONDENCE

Email, phone or in person

COMPENSATION ASSESSMENT

Retest will be conducted if there is any valid reason for the absentees of cycle test 1 or cycle test 2. The portions for retest will the portions for cycle test 1 and cycle test 2.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- > Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- > The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

> Students can meet the faculty for discussion and queries at any time during working hours seeking prior appointment from the faculty through the representative.

FOR APPROVAL

Course Faculty

CC- Chairperson

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in			P.G.	
2018	2017	2016	2015	
35% or (Class average/2) (Peak/3) or (Class Ave whichever is greater. whichever is lower			40%	

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.