DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I					
Name of the programme and specialization	B.Tech Computer Science and Engineering				
Course Title	Machine learning				
Course Code	CSPI	CSPE21 No. of Credits			3
Course Code of Pre- requisite subject(s)	CSPC25				
Session	July 2019		Section (if, applicable)		A & B
Name of Faculty	Rajeswari Sridhar		Department		Computer Science and Engineering
Email	sraje	srajeswari@nitt.edu Telephone No.			
Name of Course Coordinator(s) (if, applicable)					
E-mail			Tele	phone No.	
Course Type		Core course	٧	Elective o	ourse
Syllabus (approved in	n BoS				
2015					
COURSE OBJECTIVE	S				
 To understand the basic building blocks and general principles that allow one to design machine learning algorithms To become familiar with specific, widely used machine learning algorithms To learn methodology and tools to apply machine learning algorithms to real data and evaluate their performance 					
COURSE OUTCOMES	6 (CO)				
Course Outcomes				Aligned Programme Outcomes (PO)	
 Ability to implement and apply machine learning algorithms to real-world applications. 				PO ₁ , PO ₅ , PO ₆	
2. Ability to identify and apply the appropriate machine learning technique to classification, pattern recognition, optimization and decision problems				PO ₁ , PO ₃ , PO ₄ , PO ₅	
 Ability to understand how to perform evaluation of learning algorithms and model selection. 				PO ₁ , PO ₃ , PO ₄ , PO ₅ ,	

COURSE PLAN – PART II

COURSE OVERVIEW

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Contact Hours	Торіс	Mode of Delivery	
1	22/07/2019 to 26/07/2019 1 hour	Unit 1: Introduction to Machine learning (ML) techniques – Types, differences	Lecture	
2	22/07/2019 to 26/07/2019 2 hours	Application of ML, Design perspectives, Issues in ML	Lecture Chalk and Talk	
3	29/07/2019 to 02/08/2019 1 hour	Formal learning model	Lecture Chalk and Talk	
4	29/07/2019 to 02/08/2019 2 hours	Applications concerned with Supervised, Unsupervised learning and issues	Lecture Chalk and Talk	
5	05/08/2019 to 09/08/2019 1 hour	Run-time learning	Lecture Chalk and Talk	
6	05/08/2019 to 09/08/2019 2 hours	Unit 2: Model representation, decision boundary, cost function, gradient descent	Lecture Chalk and Talk	
7	12/08/2019 to 16/08/2019 1 hour	Debugging a learning algorithm, evaluating a hypothesis	Lecture Chalk and Talk	
8	12/08/2019 to 16/08/2019 1 hour	Diagnostic, Bias/ Variance methods, trade off, bias/variance learning curves	Lecture Chalk and Talk, Power point presentation	
9	19/08/2019 to 23/08/2019 1 hour	Accuracy measure, precision, recall, confusion matrix, trade- off, TF/IDF	Lecture Chalk and Talk	

	19/08/2019 to	Regression models	Lecture
10	23/08/2019 2 hours		Chalk and Talk
	26/08/2019 to	Unit 3: Decision trees as	Lecture
11	30/08/2019 1 hour	classifier	Chalk and Talk
	26/08/2019 to	Decision trees – pruning,	Lecture
12	2 hours	learning rules	Chalk and Talk
	02/09/2019 to	Naiver Baye's classifier,	Lecture
12	1 hour	maximum likelihood estimation	Chalk and Talk
	02/09/2019 to 06/09/2019	Maximum likelihood estimation,	Lecture Chalk and Talk
13	1 hour		Chain and Tain
	09/09/2019 to	Nearest neighbor classifier	Lecture
14	13/09/2019 1 hour		Chalk and Talk
15	09/09/2019 to 13/09/2019	Cycle Test 1	Written
15	1 hour		
	16/09/2019 to	Support vector machines,	Lecture
16	20/09/2019 1 hour	Neural networks as classifiers	Chalk and Talk and Power
	1.5.100.100.10		point presentation
	16/09/2019 to 20/09/2019	Neural network model as classifiers	Lecture
17	2 hours		Chalk and Talk and Power
	23/09/2019 to	Unit 4: Unsupervised learning	
18	27/09/2019	Similarity and distance	
10	3 hours	measures, k-means clustering,	Chalk and Talk and Power
	30/09/2019 to	Variations of k-means	Lecture
19	04/10/2019	clustering, K-medoids, fuzzy k-	
15	1 hour	means clustering	Chalk and Talk and Power
	30/09/2019 to	Variations of k-means, Fuzzy	Lecture
20	04/10/2019	c/k means, EM algorithm	Chalk and Talk and Down
	2 110015		point presentation
	07/10/2019 to	EM algorithm – algorithm,	Lecture
21	11/10/2019 1 hour	example	Chalk and Talk and Power
			point presentation

Page 3 of 6

	07/10/2019 to 11/10/2019	Bayesian networks, Model construction, algorithm	Lecture
22	2 hours		Chalk and Talk and Power point presentation
03	14/10/2019 to 18/10/2019	N-gram models, algorithm, Markov property	Lecture
23	1 hour		Chalk and Talk and Power point presentation
24	14/10/2019 to 18/10/2019 2 hours	Hidden markov model – types of probability and problem to solve	Lecture Chalk and Talk and Power point presentation
25	21/10/2019 to 25/10/2019 1 hour	Problems based on Bayesian network, HMM (assignment problem)	Lecture Chalk and Talk and Power
	21/10/2019 to	Conditional Random fields,	point presentation Lecture
26	25/10/2019 2 hours	Algorithms, application	Chalk and Talk and Power point presentation
27	28/10/2019 to 01/11/2019 1 hour	Cycle Test 2	Written
28	28/10/2019 to 01/11/2019 2 hour	Combining multiple learners – Boosting and Bagging	Lecture Chalk and Talk and Power
29	04/11/2019 to 08/11/2019 2 hours	Unit 5: Reinforcement learning – issues, elements, solution	Lecture Chalk and Talk and Power
	04/11/2019 to	Model-based learning	Lecture
30	1 hour		Chalk and Talk and Power point presentation
31	11/11/2019 to 15/11/2019 2 hours	Temporal difference learning, practical applications	Lecture Chalk and Talk and Power
	11/11/2019 to	Introduction to Deep learning,	Lecture
32	15/11/2019 1 hour	types, principles, issues	Chalk and Talk and Power point presentation
33	11/11/2019 to 15/11/2019 2 hour	Project Demo	Demo by students
Text B	ooks		

1. Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning From Theory to Algorithms, Cambridge University Press, 2014

Reference books

- 1. Ethem Alpaydin, Introduction to Machine Learning, PHI, 2005
- **2.** H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and TechniquesMorgan Kaufmann, 2000
- 3. Tom Mitchell, Machine Learning, McGraw-Hill, 1997

COURSE ASSESSMENT METHODS (shall range from 4 to 6)					
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage	
1	Cycle Test 1	09/09/2019 to 13/09/2019	1 hour	15	
2	Cycle Test 1	28/10/2019 to 01/11/2019	1 hour	15	
3	Group Project	11/11/2019 to 15/11/2019	Full-semester activity	20	
5	Assignment Problems	Periodically for Units 3,4	Two	10	
СРА	Compensation Assessment*	After completion of Cycle Test 2	1 hour	15	
6	Final Assessment *	End of November	3 hrs	40	

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Students' feedback through class committee meetings
- 2. Feedbacks are collected before final examination through MIS or any other standard format followed by the institute
- 3. Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addressed.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Email, in-person – after 4.00 pm.

COMPENSATION ASSESSMENT POLICY

- 1. One compensation assessment will be given after completion of Cycle Test 1 and 2 for the students those who are absent for any assessment due to genuine reason.
- 2. Compensatory assessments would cover the syllabus of Cycle tests 1 & 2
- 3. The prior permission and required document must be submitted for absence.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

- 1. The Course Coordinator is available for consultation during the time intimated to the students then and there.
- 2. Relative grading adhering to the instructions from the office of the Dean (Academic) will be adopted for the course.

FOR APPROVAL

Course Facult

CC-Chairperson

HOD

Page 6 of 6