

## DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

|                                                                      | COURSE PLA                                                | N-PART I                    |                            |  |
|----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|----------------------------|--|
| Name of the programme and specialization                             | II Year B.Tech. (CSE) Section A                           |                             |                            |  |
| Course Title                                                         | Introduction to Algorithms                                |                             |                            |  |
| Course Code                                                          | CSPC29                                                    | No. of Credits              | 3                          |  |
| Course Code of Pre-<br>requisite subject(s)                          | CSPC21, CSLR21                                            |                             |                            |  |
| Session                                                              | JAN 2019                                                  | Section<br>(if, applicable) | -                          |  |
| Name of Faculty                                                      | Dr. R. Mohan                                              | Department                  | CSE                        |  |
| Email                                                                | rmohan@nitt.edu                                           | Telephone No.               | 0431-2503210               |  |
| Name of Course<br>Coordinator(s)<br>(if, applicable)                 |                                                           |                             |                            |  |
| E-mail                                                               |                                                           | Telephone No.               |                            |  |
| Course Type                                                          | ✓ Core course                                             | Elective course             |                            |  |
|                                                                      |                                                           |                             |                            |  |
| Syllabus (approved in Se                                             | nate)                                                     |                             | - N                        |  |
| coefficients - solving recur<br>Unit – II<br>Divide and Conquer meth | od - Strassen's matrix mult                               | iplication - Greedy meth    |                            |  |
| Job sequencing with dead                                             | lines - Minimum spanning to                               | ices.                       |                            |  |
| Unit – III Dynamic Programming - Travelling salesman probl           | Multistage graphs - All pa<br>em - Fast Fourier transform | ir's shortest paths - Opti  | mal binary search trees -  |  |
| Unit – IV Randomized Algorithms quick sort and its analysis          | and Amortized Analysis -<br>- Min-Cut algorithm.          | Las Vegas and Monte C       | Carlo types - Randomized   |  |
| Unit – V<br>NP-Hard and NP-complet<br>Turing machines - NP-Ha        | te problems - Basic concept<br>rd graph problems.         | s - Reducibility - Cook's   | theorem (without proof) -  |  |
| Text Books 1. T. Cormen, C. Lieserso 3rd edition, 2009               | on, R. Rivest, and C. Stein,                              | "Introductions to Algorit   | hms", Prentice-Hall/India, |  |



### **COURSE OBJECTIVES**

- > To understand the importance of algorithm and its complexity
- > To analyze the complexity of an algorithm in terms of time and space complexity
- > To design and implement various programming paradigms and its complexity

### MAPPING OF COs with POs

| Course Outcomes                                                                                     | Aligned Programme<br>Outcomes (PO) |
|-----------------------------------------------------------------------------------------------------|------------------------------------|
| 1. Ability to analyze the time and space complexity, given an                                       | 1, 2, 4                            |
| algorithm                                                                                           | 1.2                                |
| <ol> <li>Ability to apply the techniques of algorithm in solving real world<br/>problems</li> </ol> | 1,2                                |
| Ability to develop systematically an algorithm for solving a problem                                | 1, 2                               |

### COURSE PLAN - PART II

#### **COURSE OVERVIEW**

The Introduction to Algorithms course deals with the study of different algorithms applied in many real world problems. In UNIT - 1, examples of algorithms, complexity notations and recurrence equations are discussed. In UNIT-II, divide and conquer methods and greedy methods are given. Then the concept of dynamic programming is discussed in UNIT-III. Different randomized algorithms are discussed in UNIT-IV. In the last unit, basic concepts of NP-hard and NP-complete problems are discussed with examples.

## COURSE TEACHING AND LEARNING ACTIVITIES

| S.No. Week |   | Topic                                                                                  | Mode of Delivery |  |
|------------|---|----------------------------------------------------------------------------------------|------------------|--|
| 1.         | 1 | Algorithms - Examples - Tournament method - Evaluating polynomial functions            | Chalk and Talk   |  |
| 2.         | 2 | Pre-processing of coefficients – recurrence equations-<br>solving recurrence equations | Chalk and Talk   |  |
| 3.         | 3 | Introduction to Divide and Conquer method – examples of Divide and Conquer             | Chalk and Talk   |  |
| 4.         | 4 | Examples of Divide and Conquer- Strassen's matrix multiplication                       | Chalk and Talk   |  |
| 5.         | 5 | Introduction to Greedy method - Knapsack problem                                       | Chalk and Talk   |  |
| 6.         | 6 | Job sequencing with deadlines - Minimum spanning trees.                                | Chalk and Talk   |  |



| MORE. |    |                                                                               |                |
|-------|----|-------------------------------------------------------------------------------|----------------|
| 7.    | 7  | Introduction to Dynamic Programming - Multistage graphs                       | Chalk and Talk |
| 8.    | 8  | All pair's shortest paths algorithm - Optimal binary search trees             | Chalk and Talk |
| 9.    | 9  | Travelling salesman problem - Fast Fourier transform.                         | Chalk and Talk |
| 10.   | 10 | Randomized Algorithms and Amortized Analysis                                  | PPT            |
| 11.   | 11 | Las Vegas and Monte Carlo types                                               | PPT            |
| 12.   | 12 | Randomized quick sort and its analysis - Min-Cut algorithm                    | PPT            |
| 13.   | 13 | NP-Hard and NP-complete problems - Basic concepts - Reducibility              | PPT            |
| 14.   | 14 | Cook's theorem (without proof) - Turing machines - NP-<br>Hard graph problems | PPT            |

# COURSE ASSESSMENT METHODS (shall range from 4 to 6)

| S.No.             | Mode of Assessment      | Week/Date                   | Duration | % Weightage |
|-------------------|-------------------------|-----------------------------|----------|-------------|
| 1                 | Assignment 1            | 1 <sup>St</sup> week of Feb |          | 5%          |
| 2                 | Cycle Test-1            | 20-02-2019                  | 1 hour   | 20%         |
| 3                 | Assignment 2            | 1st week of March           |          | 5%          |
| 4                 | Cycle Test-2            | 04-04-2019                  | 1 hour   | 20%         |
| 5                 | Compensation assessment | 1st week of May             | 1 hour   | 20%         |
|                   | Final Assessment Theory | 13-05-2019                  | 3 hours  | 50%         |
| 6<br><b>TOT</b> A | 100%                    |                             |          |             |

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Students' feedback through class committee meetings.
- 2. Feedback questionnaire from students from MIS at the end of the semester.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

## MODE OF CORRESPONDENCE (email/ phone etc)

Mode of Correspondence through Phone or email.



#### COMPENSATION ASSESSMENT POLICY

In case of emergency, the student should submit compensatory assignments on submission of appropriate documents as proof. Compensatory assessments would be framed according to the time frame available and the assessment task missed by the students.

### ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

### **ACADEMIC DISHONESTY & PLAGIARISM**

- ➤ Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- > The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmers.

#### ADDITIONAL INFORMATION

lew gen

The students can get their doubts clarified at any time with their faculty member.

FOR APPROVAL

Course Faculty

**CC-Chairperson** 

HOD