DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLA	N – PART I		
Course Title	Mathematical Foundations for Computer Science			
Course Code	CS602	No. of Credits	03	
Course Code of Pre- requisite subject(s)	None			
Session	Jan 2018	Section (if, applicable)		
Name of Faculty	Dr. Kunwar Singh	Department	CSE	
Email	kunwar@nitt.edu	Telephone No.	0431 – 2503212	
Course Type	Core course	Elective course		

Syllabus (approved in BoS)

Unit I

Functional Logic: Proposition Logic, Resolution Proof system, Predicate logic. Congruences, Fermat's theorem, Euler function, Chinese remainder theorem.

Unit II

Groups, homomorphism theorems, cosets and normal subgroups, Lagrange's theorem, Ring. Field. Linear algebra: Vector Space, Basis, Matrices and Linear Transformations, Eigen values, Orthogonality.

Unit III

Counting, Probability, Discrete random variable, Continuous random variable, Moment generating function, Markov's inequality, Chebyshev's inequality, The geometric and binomial distributions, The tail of the binomial distribution.

Unit IV

Graphs, Euler tours, planar graphs, Hamiltonian graphs, Euler's formula, applications of Kuratowski's theorem, graph colouring, chromatic polynomials, trees, weighted trees, the maxflow min-cut theorem.

Unit V

Turing Machines, Recursive and Recursively Enumerable languages. Cantor's Diagonalization theorem. Complexity classes - NP-Hard and NP-complete Problems - Cook's theorem NP completeness reductions. Approximation algorithms.

Text Books

- 1. Donald F. Stanat and David F. McAllister, Discrete mathematics in Computer Science.
- 2. Thomas Koshy, Elementary number theory with Applications, Elsevier
- 3. I.N.Herstein, Topics in Algebra. JOHN Wiley & SONS. 1990.
- 4. Sheldon M. Ross, Introduction to Probability Models, Elsevier.

- 5. H. Cormen, C. E. Leiserson, R. L. Rivest, C Stein, Introduction to Algorithms, Prentice Hall India.
- Douglas B. West, Introduction to Graph Theory, Prentice Hall of India.
 Linear Algebra 2nd Edition (Paperback) by Kenneth Hoffman, Ray Kunze, PHI Learning, 2009.

COURSE OBJECTIVES

1. To gain the ability to use some of the fundamental methods of logic, number theory, algebra, combinatorics, probability and graph theory in Computer Science.

Course Outcomes	Aligned Programme Outcomes (PO) PO1, PO4	
Course Outcomes		
Be able to comprehend the fundamental methods of logic, number theory and algebra.		
 Be able to comprehend the fundamental methods of combinatorics, probability and graph theory. Use basic combinatorics in graph theory and to obtain probabilities. 	PO1, PO4	
3. Be conversant with the Mathematical Rigor that is necessary for computer science and be able to come up with rigorous arguments.	PO1, PO4	

12		COURSE PLAN – PART II					
COURSE OVERVIEW							
COURSE TEACHING AND LEARNING ACTIVITIES							
S.No. Week/Contact Hours		Topic	Mode of Delivery				
1	1/3	Functional Logic: Proposition Logic, Resolution Proof system	Chalk & Talk				
2	2/3	Predicate logic. Congruences, Fermat's theorem, Euler function,	Chalk & Talk				
3	3/3	Chinese remainder theorem, Groups, homomorphism theorems, cosets and normal subgroups,	Chalk & Talk				
4	4/3	Lagrange's theorem, Ring. Field. Linear algebra	Chalk & Talk				
5	5/3	Vector Space, Basis, Matrices and Linear Transformations	Chalk & Talk				

	6/3				Chalk & Talk	
6		Eigen values, Orthogonality				
7	7/3	Counting, Probability, Discrete random variable			Chalk & Talk	
8	8/3	Continuous random variable, Moment generating function, Markov's inequality, Chebyshev's inequality			Chalk & Talk	
9	9/3	The geometric and binomial distributions, The tail of the binomial distribution.			Chalk & Talk	
10	10/3	Graphs, Euler tours, planar graphs, Hamiltonian graphs, Euler's formula, applications of Kuratowski's theorem,			Chalk & Talk	
11	11/3	graph colouring, chromatic polynomials, trees, weighted trees,			Chalk & Talk	
12	12/3	The max-flow min-cut theorem, Turing Machines, Recursive and Recursively Enumerable languages. Cantor's Diagonalization theorem			Chalk & Talk	
13	13/3	Complexity classes - NP-Hard and NP-complete Problems Cook's theorem NP completeness reductions. Approximation algorithms			Chalk & Talk	
COUR	SE ASSESSMENT MET	HODS (s	shall range from 4 to 6)			
S.No.	Mode of Assessm	ent	Week/Date	Duration	% Weightage	
1	Cycle Test I		5 th week	1 hour	20	
2	Cycle Test II		10 th week	1 hour	20	
3	Assignement 1 Assignement 2 Assignement 3 Assignement 4		4 th week of January 4 th week of February 4 th week of March 4 th week of April		10	
	Compensation Assessment*					

1st week of May

4

Final Assessment *

50

Course Exit Survey

- Feedbacks are collected before every Cycle Test and after the End semester exam in the feedback forms*.
- Suggestions from the students are incorporated for making the course more understanding and interesting.
- Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addresses.

ATTENDANCE

Minimum 75% is mandatory to write the end semester examination. Students having attendance 65% to 74% are eligible for the end semester exam only after attending the extra classes and submitting assignments. Students have to redo the course, if they have less than 65% of attendance.

Medical Certificate/ On Duty Certificate should be submitted immediately after rejoining.

COMPENSATION ASSESSMENT

The Students those have missed the cycle test 1 or cycle test 2 on medical or OD can appear for COMPENSATION ASSESSMENT (Retest) after showing the medical certificate or OD letter signed by competent authority.

ACADEMIC HONESTY & PLAGIARISM

In cycle tests or semester exam, students who are caught copying from cell phone, paper chit or from neighboring students will be directly given zero marks. In addition, a letter to their parents may be sent reporting the incident. Again if students are caught copying will result in failure in the course.

ADDITIONAL INFORMATION

The students can get their doubts clarified at any time with prior appointment.

FOR APPROVAL

Course Faculty

CC-Chairperson

31 61 10