

# Department of Computer Science and Engineering National Institute of Technology, Tiruchirappalli

| 1. Course Outline                  |                                             |                |                |  |  |  |  |  |  |
|------------------------------------|---------------------------------------------|----------------|----------------|--|--|--|--|--|--|
| Course Title                       | DESIGN AND ANALYSIS OF PARALLEL ALGORITHMS  |                |                |  |  |  |  |  |  |
| Course Code                        | CSPE12                                      | CSPE12         |                |  |  |  |  |  |  |
| Programme, Department<br>& Section | B.Tech. – CSE                               | No. of Credits | 3              |  |  |  |  |  |  |
| Pre-requisites Course<br>Code      | CSPC29                                      | Faculty Name   | Dr. M.Sridevi  |  |  |  |  |  |  |
| E-mail                             | msridevi@nitt.edu                           | Telephone No.  | 0431 - 2503216 |  |  |  |  |  |  |
| Course Type                        | PE                                          | ·              |                |  |  |  |  |  |  |
| Session in Academic Year           | July - November 2017 Session (Odd Semester) |                |                |  |  |  |  |  |  |

## 2.Course Overview

- This course mainly describes about the parallel algorithms and analyze of it.

## 3. Course Objectives

- To understand parallel computing algorithms and models
- To analyze parallel algorithms for PRAM machines and various interconnection networks

### 4. Course Outcomes (CO)

- Ability to analyze parallel algorithms for PRAM machines
- Ability to comprehend and apply parallel algorithms to real world applications
- Ability to design and develop optimal parallel algorithms

|                                                                                | Aligned Programme Outcome (PO) |          |          |          |          |          |              |          |
|--------------------------------------------------------------------------------|--------------------------------|----------|----------|----------|----------|----------|--------------|----------|
| 5. Course Outcomes (CO)                                                        | РО-<br>1                       | PO-<br>2 | PO-<br>3 | РО-<br>4 | PO-<br>5 | PO-<br>6 | <b>PO-</b> 7 | PO-<br>8 |
| Ability to analyze parallel algorithms for PRAM machines                       | S                              | S        | S        | S        | М        | М        | В            | М        |
| Ability to comprehend and apply parallel algorithms to real world applications | S                              | s        | s        | s        | s        | s        | В            | М        |
| Ability to design and develop optimal parallel algorithms                      | S                              | S        | S        | S        | S        | S        | В            | М        |
| S = 0.6 M =                                                                    | 0.4                            |          |          | B =      | 0.0      |          |              |          |

| L.No | Title                                                                | Туре         |              | Mode of delivery |     |       |              |
|------|----------------------------------------------------------------------|--------------|--------------|------------------|-----|-------|--------------|
|      |                                                                      | L            | Т            | C&T              | РРТ | VL/VC | DEMO         |
|      | UNIT I                                                               |              |              | I                | 1   |       | I            |
|      | Introduction to parallel and sequential algorithms                   |              |              | $\checkmark$     |     |       |              |
| 2.   | Different types of Parallel Computers                                | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 3.   | Types of Shared memory SIMD models                                   | $\checkmark$ |              |                  |     |       |              |
| 4.   | Interconnection networks and their types                             | V            |              |                  |     |       |              |
|      | Classifying MIMD algorithms                                          |              |              |                  |     |       |              |
| 6    | Analysis the algorithm based on running time,<br>processors and used | V            |              |                  |     |       |              |
| 7    | Sequential and parallel search algorithms on different SIMD models   | V            |              | $\checkmark$     |     |       |              |
| 8.   | Assignments                                                          |              |              |                  |     |       |              |
|      | UNIT II                                                              |              |              |                  |     |       |              |
|      | Sequential Selection algorithm                                       |              |              |                  |     |       |              |
| 10.  | Parallel Selection algorithm and time complexity analysis            |              | $\checkmark$ | $\checkmark$     |     |       |              |
| 11.  | Broad casting a datum and Computing all sums                         | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 12.  | Sequential sorting and Sorting on a linear array                     | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 13.  | Sorting using merge split                                            | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 14.  | Sorting on CRCW model                                                | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 15.  | Sorting on CREW model                                                |              |              |                  |     |       |              |
| 16.  | Sorting on EREW model                                                |              |              |                  |     |       |              |
| 17.  | Parallel quick sort                                                  |              |              |                  |     |       |              |
|      | Hyper Quick sort using hypercube                                     |              |              |                  |     |       |              |
| 19.  | Assignments                                                          |              |              |                  |     |       | $\checkmark$ |
|      | UNIT III                                                             |              |              |                  |     |       |              |
| 20.  | Matrix operations                                                    | $\checkmark$ |              |                  |     |       |              |
| 21.  | Sequential and parallel matrix multiplication                        | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 22.  | Matrix transpose on shuffle network                                  | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 23.  | EREW matrix transpose                                                | $\checkmark$ |              | $\checkmark$     |     |       |              |
| 24.  | Matrix multiplication on Mesh network                                |              |              | $\checkmark$     |     |       |              |
| 25.  | Matrix multiplication on Cube                                        |              | $\checkmark$ | $\checkmark$     |     |       |              |
| 26.  | CRCW matrix multiplication                                           |              |              |                  |     |       |              |

| L.No | Title                                                                           |              | Туре |              | Mode of delivery |       |              |  |
|------|---------------------------------------------------------------------------------|--------------|------|--------------|------------------|-------|--------------|--|
|      |                                                                                 | L            | Т    | С&Т          | РРТ              | VL/VC | DEMO         |  |
| 27.  | Matrix by vector multiplication on linear array                                 | V            |      | V            |                  |       |              |  |
| 28.  | Multiplication on tree network                                                  | V            |      | $\checkmark$ |                  |       |              |  |
| 29.  | Assignments                                                                     |              |      |              |                  |       |              |  |
|      | UNIT IV                                                                         |              |      |              | 1                | 1     |              |  |
| 30.  | Solving linear equation using parallel Gauss-<br>elimination and Gauss - Jordan | V            |      |              |                  |       |              |  |
| 31.  | MIMD algorithm for Gauss – Seidel method                                        |              |      |              |                  |       |              |  |
|      | Finding roots of non – linear equations using bisection and Netwon's methods    | $\checkmark$ |      | $\checkmark$ |                  |       |              |  |
| 33.  | Solving partial differential equations                                          |              |      | $\checkmark$ |                  |       |              |  |
| 34.  | Computing Eigen values and parallel random number genertors                     | $\checkmark$ |      | $\checkmark$ |                  |       |              |  |
| 35.  | Assignments                                                                     |              |      |              |                  |       | $\checkmark$ |  |
|      | UNIT V                                                                          |              |      |              |                  |       |              |  |
| 36.  | Computing the connectivity matrix                                               | $\checkmark$ |      | $\checkmark$ |                  |       |              |  |
| 37.  | Finding connected components using cube<br>SIMD model                           | $\checkmark$ |      | $\checkmark$ |                  |       |              |  |
| 38.  | Traversal, Minimal alpha beta tree                                              | $\checkmark$ |      | $\checkmark$ |                  |       |              |  |
| 39.  | Computing minimum cost spanning tree                                            | $\checkmark$ |      | $\checkmark$ |                  |       |              |  |
| 40   | Assignments                                                                     |              |      |              |                  |       |              |  |

| 7. Course Assessment Methods |                         |                                |            |       |  |  |  |  |  |
|------------------------------|-------------------------|--------------------------------|------------|-------|--|--|--|--|--|
| Sl. No.                      | Mode of Assessment      | Week / Date                    | Duration   | Marks |  |  |  |  |  |
| 1                            | Cycle Test 1            | After completion of two units  | 60 minutes | 20    |  |  |  |  |  |
| 2                            | Cycle Test 2 / Quiz     | After completion of four units | 60 minutes | 20    |  |  |  |  |  |
| 3                            | Programming Assignments | Every Unit                     | -          | 10    |  |  |  |  |  |
| 4                            | End Semester Exam       | As Per Academic Schedule       | 3 hours    | 50    |  |  |  |  |  |
|                              |                         | •                              | Total      | 100   |  |  |  |  |  |

#### 8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

#### **Text Books:**

1. S. G. Akl, "The design and analysis of parallel algorithms", prentice Hall of India, 1989. **References:** 

- 1. B. Wilkinson and M. Allen, "Parallel Programming techniques and applications using networked workstations and parallel computers", 2<sup>nd</sup> Edition, Pearson Education, 2005.
- 2. Michael J. Quinn, "Parallel computing: throry and practice", Tata mCgraaw Hill, 2003.
- 3. S. Lakshmivarahan and S.K. Dhall, "Analysis and design of parallel algorithms Arithemetic and matrix problems", Taat McGraw hill.

9. Course Exit Survey

- Feedbacks are collected from the student before end semester examination through MIS or any other standard format followed by the institute.
- Suggestions from the students are incorporated for making the course more understanding and interesting.
- Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addresses.
- The students may also give their feedback during Class Committee Meeting.

#### 10. Course Policy (including plagiarism, academic honesty, attendance, etc.)

Attendance: Minimum 75% is mandatory to write the end semester examination. Students having attendance 65% to 74% are eligible for the end semester exam only after attending the extra classes and submitting assignments. Students have to redo the course, if they have less than 65% of attendance.

Medical Certificate/ On Duty Certificate should be submitted immediately after rejoining.

For Senate's Consideration

N.Jd

chrs

HOD / CSE

Course Faculty M-SRIDEVI) **Class Committee Chairperson**