

Department of Computer Science and Engineering National Institute of Technology Tiruchirappalli

1. Course Outline							
Course Title	Computer Architecture						
Course Code	CSPC31						
Department	CSE	No. of Credits	4				
Pre-requisites Course Code	CSPC24	Faculty Name	Mrs.A.Lavanya Mathiyalagi				
E-mail	lavanyaa@nitt.edu	Telephone No.	0431 - 2501801				
Course Type	Core Course	•					

2.Course Overview

Computer Architecture helps to design complex modern microprocessors.

3. Course Objectives

- To understand the concept of advanced pipelining techniques
- To understand the current state of art in memory system design
- To know the working principle of I/O devices

4. Course Outcomes (CO)

- Ability to apply performance metrics to find the performance of systems
- Ability to identify the problems in components of computer
- Ability to comprehend and differentiate various computer architectures and hardware

5. Course Outcome (CO)		Aligned Programme Outcome (PO)							
		PO- 2	РО- 3	РО- 4	РО- 5	PO- 6	PO- 7	PO- 8	
Ability to apply performance metrics to find the per formance of systems	S	В	В	М	В	М	В	М	
Ability to identify the problems in components of c omputer	S	В	М	В	В	М	В	В	
Ability to comprehend and differentiate various co mputer architectures and hardware	М	В	В	В	М	S	В	М	

$$S = 0.6$$
 $M = 0.4$ $B = 0.0$

6. Course Teaching and Learning Activities								
	Title	Туре		Mode of delivery				
L.No			T	C & T	PP T	VL/ VC	DEMO	
	UNIT I							
1.	Introduction							
2.	Classes of computers							
3.	Defining Computer Architecture	\checkmark		\checkmark				
4.	Trends in Technology	\checkmark		\checkmark				
5.	Trends in Power & Energy in Integrated Circuits							
6.	Trends in Cost							
7.	Dependability							
8.	Measuring, Reporting							
9.	Summarizing Performance							
10.	Quantitative Principles of Computer Design	V		V				
11.	Tutorial							
	UNIT II					I	I	
12.	Basic and Intermediate pipelining Concepts							
13.	The Major Hurdle of Pipelining							
14.	Pipeline Hazards							
15.	Pipelining Implementation				V			
16.	Implementation issues that makes Pipelining hard				, ,			
17.	Extending the MIPS Pipeline to Handle Multicycle Operations	\checkmark						
18.								
	1			, v				
19.	Tutorial							
	UNIT III			1		1	1	
20.	Instruction	√ √			N .			
21.	1. Level Parallelism				$^{\vee}$			
22.	Concepts and Challenges							
23.								
24.								
25.								
26.	Dynamic Scheduling							
27.	Hardware-Based Speculation							
28.	Exploiting ILP			\checkmark				
29.	Using Multiple Issue Static Scheduling		+		1			
30.	Exploiting ILP	V	+		V			
	Advanced Techniques for		-					
31.	Instruction Delivery and Speculation	\checkmark		\checkmark				

32.	Studies of the Limitations of ILP			\checkmark			
33.	Tutorial						
	UNIT IV						
34.	Vector Architecture	$\sqrt{1}$					
35.							
36.	Graphics Processing Units	$\sqrt{1}$					
37.	. Detecting and Enhancing			\checkmark			
38.	Loop Level Parallelism	ĺ √			\checkmark		
39.	Centralized Shared Memory	\checkmark					
40.	Centralized Shared-Memory Architectures	\checkmark		\checkmark			
41.	Performance of Shared	\checkmark		\checkmark			
42.	2. Memory Multiprocessors			\checkmark			
43.	3. Distributed Shared Memory						
44.	. Models of Memory Consistency			\checkmark			
45.	. Multicore Processors and Their Performance			\checkmark			
46.	. Tutorial			\checkmark			
	UNIT V			I		1	
47.	Review of Memory Hierarchy Design	√ ,		\checkmark			
48.	Cache Performance	V			\checkmark		
49.	Basic Cache Optimizations	V		\checkmark			
50.	Virtual Memory	V			\checkmark		
51.					\checkmark		
52.	Advanced Optimizations of Cache Performance			\checkmark			
53.	Memory Technology and Optimizations			\checkmark			
54.	Protection: Virtual Memory and Virtual Machines			\checkmark			
55.	Crosscutting Issues: The Design of Memory Hierarchies				\checkmark		
56.	Case Studies / Lab Exercises	\checkmark		\checkmark			
57.	7. Tutorial						

7. Course Assessment Methods								
Sl. No.	Mode of Assessment	Week/Date	Duration	% Weightage				
1	Assignment I	4 th Week of July'17	1 Week Time	5%				
2	Cycle Test – 1	1 st Week of Aug'17	1 hour	20%				
3	Assignment II	1 st Week of Sep'17	1 Week Time	5%				
4	Cycle Test – 2	3 rd Week of Sep'17	1 hour	20%				
5	End Semester Exam	2 nd Week of Nov'17	3 hours	50%				
	100%							

8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

Text Books

1. David. A. Patterson and John L. Hennessy, "Computer Architecture: A Quantitative approach", Elsevier, 5th Edition, 2012

Reference Book

1. K. Hwang and Naresh Jotwani, "Advanced Computer Architecture, Parallelism, Scalability, Programmability", Tata McGraw Hill, 2nd Edition, 2010

9. Course Fe	edback Methods	
Feedbacks	Duration	Assesment method
Ι	1 st week of Aug'17	Offline through grade points (0 to 5)
II	2 nd week of Sep'17	
III	4 th week of Oct '17	

10. Course Policy (including plagiarism, academic honesty, Attendance)

- Attendance: Minimum 75% is mandatory to write the end semester examination. Students having attendance 65%-74% are eligible for the end semester exam only after justifying their leave. Students have to redo the course, if they have less than 65% percentage of attendance at any cost. Students coming late to the class will not be provided attendance for that hour at any cost.
- Medical certificate or on-duty certificate should be submitted immediately after rejoining the next class.
- Students should turn off electronic devices during classes, such as cell phones, iPods, laptop, etc.
- Academic Honesty: Students disturbing the class, not attentive and students who do malpractices in assignments and test will not be permitted to attend any test commencing thereafter (including the end semester exam).
- Late submission of assignments will be awarded zero mark.

11. Additional Course Information

Students can meet the faculty for discussion and queries at any time during working hours seeking prior appointment from the faculty through the class representative

For Senate's consideration

A. M. . (A. Lavanya Mathiyalagi)

Course Faculty

ands

Class Committee Chairperson