Department of Computer Science and Engineering

National Institute of Technology, Tiruchirappalli

COURSE OUTLINE						
Course Title	Distributed Algorithms					
Course Code	CSH011	No. of Credits	3			
Department	CSE	Faculty	Swathy Murali Mohan			
Pre-requisites	CSPC29					
Course Coordinator(s) (if, applicable)	Swathy Murali Mohan					
Teacher(s)/Tutor(s) E-mail	swathimuralimohan@gmail.com	Telephone No.	9496605124			
Course Type	Honors Course	·				

COURSE OVERVIEW

This course deals with various algorithms and Synchronous & Asynchronous models used in Distributed Computing

COURSE OBJECTIVES

COUDSE OUTCOMES

- To understand the fundamental algorithms and protocols that are commonly used in distributed computing
- To learn the basics about synchronous and asynchronous models

COURSE OUTCOMES								
COr	Aligned Programme Outcome (PO)							
COS		PO2	PO3	PO4	PO5	PO6	PO7	PO8
Ability to comprehend distributed protocols and algorithms	S	В	М	В	В	В	В	М
Ability to comprehend, develop, and analyze distributed algorithms for mission critical applications	S	M	S	М	М	М	М	М
Ability to design and develop distributed algorithms for real world problems	S	М	S	S	S	S	М	М

COURSE TEACHING AND LEARNING ACTIVITIES					
Sl. No.	Торіс	Mode of Delivery			
UNIT - 1					
1	Introduction	Chalk-Board			
2	Synchronous Network Model	Chalk-Board			
3	Leader election in a synchronous ring	Chalk-Board			
4	Algorithms in general synchronous networks- Breadth First Search, Shortest Path	Chalk-Board			
5	Algorithms in general synchronous networks – Minimum Spanning Tree, Maximal Independent Set	Chalk-Board			
6	Distributed consensus with link failures	Chalk-Board			
7	Distributed consensus with process failures	Chalk-Board			
	UNIT - 2				
1	Asynchronous system model – I/O Automata	Chalk-Board			
2	Asynchronous system model – Complexity Measures, Indistinguishable executions, Randomization	Chalk-Board			
3	Asynchronous shared memory model	Chalk-Board			
4	Mutual exclusion	Chalk-Board			
5	Resource allocation	Chalk-Board			
6	Consensus	Chalk-Board			
7	Atomic objects	Chalk-Board			
	UNIT - 3				
1	Asynchronous network model	Chalk-Board			
2	Basic asynchronous network algorithms – Leader Election in a Ring, Leader Election in an Arbitrary Network	Chalk-Board			
3	Basic asynchronous network algorithms – Spanning Tree Construction	Chalk-Board			
4	Basic asynchronous network algorithms – BFS and Shortest Path	Chalk-Board			
5	Basic asynchronous network algorithms – Minimum Spanning Tree	Chalk-Board			
6	Synchronizers – Local Synchronizer	Chalk-Board			
7	Synchronizers – Safe Synchronizer	Chalk-Board			
UNIT - 4					
1	Shared memory versus networks	Chalk-Board			
2	Logical time	Chalk-Board			
3	Global snapshots and stable properties	Chalk-Board			
4	Network resource allocation – Mutual exclusion	Chalk-Board			

5	Network resource allocation – General Resource Allocation			Chalk-Board		
6	Partially synchronous system models – MMT Automata, General Timed Automata			Chalk-Board		
7	Partially synchronous system models – Mutual Exclusion			Chalk-Board		
		UNIT - 5				
1	Fault Tolerance in distributed systems – Robust Algorithms			Chalk-Board		
2	Fault Tolerance in distributed systems – Stabilizing Algorithms			Chalk-Board		
3	Fault Tolerance in asynchronous systems – Initially dead cases, Deterministically Acheivable Cases			Chalk-Board		
4	Fault Tolerance in asynchronous systems – ProbabilisticChalk-BoardConsesnsus AlgorithmsFault Tolerance in synchronous systems – SynchronousDecision ProtocolsEntert					
5	Fault Tolerance in synchronous systems – Authenticating Protocols, Clock Synchronization			Chalk-Board		
6	Failure detection			Chalk-Board		
7	Stabilization			Chalk-Board		
	TOTAL			35		
COURSE ASSESSMENT METHODOLOGY						
Sl. No	Mode of Assessment	Week/Date	Dura	tion	Marks	
1	Assessment -1	5 th week	1 hou	r	20	
2	Assessment - 2	11 th week	1 hou	r	20	
3	Assignment	10 th week			10	
4	End Semester Examination	November last week	3 hou	rs	50	
				Total	100	

ESSENTIAL READINGS (Textbooks, Reference books, Websites, Journals, etc.)

Text Books

 Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers 1996
Gerard Tel, "Introduction to Distributed Algorithms", Cambridge University Press, 2 nd edition, 2000

Course Exit Survey

Student feedback form will be collected at the end of the course through MIS

Course Policy

Attendance- Students having 75% to 100% attendance are eligible for writing the End semester Examination. Students having attendance between 65% & 75% with valid reasons can write the end semester exam after attending extra classes. Students havingless than 65% have to redo the course. Student should not absent for the assessment. If the reason for absence is genuine, the student can reappear for reassessment.

FOR SENATE'S CONSIDERATION

Course Faculty

leno

HOD

CC Chairperson