

Department of Computer Science and Engineering National Institute of Technology Tiruchirappalli

COURSE PLAN

1. Course Outline					
Course Title	Principles of Programming Languages				
Course Code	CSPC23				
Department	CSE	No. of Credits	3		
Pre-requisites Course Code	NIL	Faculty Name	Mrs.T.Siron Anita Susan		
E-mail	siron@nitt.edu	MobileNo.	9488269859		
Course Type	Core Course	•			

2.Course Overview

Principles of Programming Languages mainly describes about the syntax, semantics and implementation of various programming language paradigms.

3. Course Objectives

- \Box To understand and describe syntax and semantics of programming languages
- □ To understand data, data types, and basic statements
- □ To understand call-return architecture and ways of implementing them
- \Box To understand object-orientation, concurrency, and event handling in programming languages
- \Box To develop programs in non-procedural programming paradigms

4. Course Outcomes (CO)

- Describe syntax and semantics of programming languages
- Explain data, data types, and basic statements of programming languages
- Design and implement subprogram constructs
- Apply object-oriented, concurrency, and event handling programming constructs
- Develop programs in Scheme, ML, and Prolog
- Understand and adopt new programming languages

	Aligned Programme Outcome (PO)							
5. Course Outcome (CO)	РО- 1	PO- 2	РО- 3	РО- 4	PO- 5	PO- 6	PO- 7	PO- 8
Describe syntax and semantics of programming	S	В	М	М	В	М	В	М
Explain data, data types, and basic statements of programming languages	S	В	М	В	М	В	В	М
Design and implement subprogram constructs	М	В	S	S	М	М	М	В
Apply object-oriented, concurrency, and event handling programming constructs	s	М	М	М	S	В	М	М
Develop programs in Scheme, ML, and Prolog	s	М	М	М	В	М	М	В
Understand and adopt new programming languages	М	М	В	В	S	В	М	В

M = 0.4

B = 0.0

6. Course Teaching and Learning Activities					
Weeks	Hours	Title	Mode of delivery		
1.	1	Evolution of programming languages – describing syntax & semantics	Chalk and board		
	2	Lexical analysis –Parsing –recursive-decent –bottom up parsing	Chalk and board		
	3	Primitive data types –strings	Chalk and board		
2.	4 Array types associative arrays –record types		Chalk and board		
	5	Union types –Pointers and references	Chalk and board		
	6	Arithmetic expressions –relational and Boolean expressions	Chalk and board		
3.	7 Assignment statements		Chalk and board		
8		Mixed-mode assignments	Chalk and board		
	9	Control structures –Selection –Iterations	Chalk and board		
4.	4. 10 Branching –guarded statements		Chalk and board		
11		Programming Assignments	PPT		
	12	Subprograms –Design issues	Chalk and board		
5.	13	Local referencing –Parameter passing	Chalk and board, PPT		
14 Ov		Overloaded methods –generic methods	Chalk and board, PPT		
	15	Design issues for functions	Chalk and board		
6.	16	Semantics of call and return –implementing simple subprograms	Chalk and board, PPT		
	17	Dynamic local variables –Nested subprograms	Chalk and board, PPT		

	18	Blocks –Dynamic scoping	Chalk and board		
7.	7. 19 Programming Assignments		PPT		
	20	Object-orientation –design issues for OOP languages	Chalk and board		
	21	Implementation of object-oriented constructs –Concurrency	Chalk and board, PPT		
8.	22	Semaphores	Chalk and board, PPT		
	23	Monitors	Chalk and board		
	24	Message passing	Chalk and board		
9.	25	Threads –statement level concurrency	Chalk and board		
	26	Exception handling –even handling	Chalk and board		
	27	Programming Assignments in C++	Chalk and board, PPT		
10.	28	Introduction to lambda calculus	Chalk and board		
	29	Fundamentals of Functional programming languages	Chalk and board		
	30	Programming with Scheme –Introduction to LISP	Chalk and board		
11. 31 32		Lists - Storage allocation for lists	Chalk and board		
		Some useful functions - Error handling	Chalk and board		
	33	Programming Assignments in LISP	Chalk and board,PPT		
12.	34	Introduction to logic and logic programming-	Chalk and board		
	35	Computing with relations	Chalk and board		
	36	Programming with Prolog - Intoduction	Chalk and board, PPT		
13.	37	Data structures in Prolog	Chalk and board, PPT		
	38	Programming techniques - Control in Prolog	Chalk and board		
	39	Cuts Multi-paradigm languages	Chalk and board		
14.	40	Programming Assignments in PROLOG	Chalk and board, PPT		

7. Course Assessment Methods							
Sl. No.	Mode of Assessment	Week/Date	Duration	Marks			
1	Cycle Test – 1	5 th week	1 hour	20			
2	Cycle Test – 2	11 th week	1 hour	20			
3	Assignment	$4^{\text{th}}, 10^{\text{th}} \text{ weeks}$	_	10			
4	End Semester Exam	November last week	3 hours	50			
			Total	100			

8. Essential Readings

Text Books

□ Robert W. Sebesta, "Concepts of Programming Languages", Tenth Edition, Addison Wesley, 2012.

☐ Michael L. Scott, "Programming Language Pragmatics", Third Edition, Morgan Kaufmann,2009.

R. Kent Dybvig, "The Scheme programming language", Fourth Edition, MIT Press, 2009.

☐ Jeffrey D. Ullman, "Elements of ML programming", Second Edition, Prentice Hall, 1998.

Richard A. O'Keefe, "The craft of Prolog", MIT Press, 2009.

□ W. F. Clocksin and C. S. Mellish, "Programming in Prolog: Using the ISO Standard", Fifth Edition, Springer, 2003.

Course Exist Survey

Student feedback form will be collected at the end of the course through MIS

Course Policy

Attendance- Students having 75% to 100% attendance are eligible for writing the End semester Examination. Students having attendance between 65% & 75% with valid reasons can write the end semester exam after attending extra classes. Students havingless than 65% have to redo the course. Student should not absent for the assessment. If the reason for absence is genuine, the student can reappear for reassessment.