

Department of Computer Science and Engineering National Institute of Technology Tiruchirappalli

1. Course Outline									
Course Title	Principles of Programming Languages								
Course Code	CSPC23								
Department	CSE	No. of Credits	3						
Pre-requisites Course Code	NIL	Faculty Name	Dr. S. Usha Kiruthika						
E-mail	usha@nitt.edu	Telephone No.	944446959						
Course Type	Core Course								

2.Course Overview

Principles of Programming Languages mainly describes about the syntax, semantics and implementation of various programming language paradigms.

3. Course Objectives

- To understand and describe syntax and semantics of programming languages
- To understand data, data types, and basic statements
- To understand call-return architecture and ways of implementing them
- To understand object-orientation, concurrency, and event handling in programming languages
- To develop programs in non-procedural programming paradigms

4. Course Outcomes (CO)

- Describe syntax and semantics of programming languages
- Explain data, data types, and basic statements of programming languages
- Design and implement subprogram constructs
- Apply object-oriented, concurrency, and event handling programming constructs
- Develop programs in Scheme, ML, and Prolog
- Understand and adopt new programming languages

5. Course Outcome (CO)		Aligned Programme Outcome (PO)								
		PO- 2	PO- 3	РО- 4	РО- 5	PO- 6	PO- 7	PO- 8		
Describe syntax and semantics of programming languages	S	В	М	М	В	М	В	М		
Explain data, data types, and basic statements of programming languages	S	В	М	В	М	В	В	М		
Design and implement subprogram constructs	М	В	S	S	М	М	М	В		

Apply object-oriented, concurrency, and event handling programming constructs		М	М	М	S	В	М	М
Develop programs in Scheme, ML, and Prolog		М	М	М	В	М	М	В
Understand and adopt new programming languages		М	В	В	S	В	М	В
S = 0.6 M =	M = 0.4		$\mathrm{B}=0.0$					

6. C	ourse Teaching and Learning Activities						
L.		Туре		Mode of delivery			
No	Title		Т	C & T	РРТ	VL/ VC	DEMO
	UNIT I	I					1
1.	Evolution of programming languages						
2.	Describing syntax & semantics Lexical analysis			\checkmark			
3.	Parsing – recursive- decent – bottom up parsing	\checkmark		\checkmark			
4.	Primitive data types –strings - Array types associative arrays	\checkmark		\checkmark			
5.	Record types - Union types –Pointers and references	\checkmark		\checkmark			
6.	Arithmetic expressions –relational and Boolean expressions	\checkmark		\checkmark			
7.	Assignment statements - Mixed-mode assignments			\checkmark			
8.	Control structures –Selection –Iterations			\checkmark			
9.	Branching –guarded statements			\checkmark			
10.	Programming Assignments						
	UNIT II						
11.	Subprograms –Design issues	\checkmark		\checkmark			
12.	Local referencing –Parameter passing	\checkmark					
13.	Overloaded methods –generic methods	\checkmark		\checkmark			
14.	Design issues for functions	\checkmark		\checkmark			
15.	Semantics of call and return –implementing simple subprograms	\checkmark		\checkmark	\checkmark		
16.	Dynamic local variables –Nested subprograms	\checkmark					
17.	Blocks – Dynamic scoping	\checkmark		\checkmark			
18.	Programming Assignments						\checkmark
	UNIT III						
19.	Object-orientation -design issues for OOP languages	\checkmark		\checkmark			
20.	Implementation of object-oriented constructs	\checkmark		\checkmark			
21.	Concurrency - Semaphores	\checkmark		\checkmark			
22.	Monitors	\checkmark					
23.	Message passing	\checkmark		\checkmark			
24.	Threads –statement level concurrency	\checkmark		\checkmark			
25.	Exception handling –even handling	\checkmark		\checkmark			
26.	Programming Assignments in C++						

	UNIT IV							
27.	Introduction to lambda calculus	\checkmark						
28.	Fundamentals of Functional programming languages	\checkmark						
29.	Programming with Scheme	$$						
30.	Introduction to LISP	\checkmark						
31.	Lists - Storage allocation for lists	\checkmark		\checkmark				
32.	Some useful functions - Error handling	\checkmark		\checkmark				
33.	Programming Assignments in LISP				\checkmark			
	UNIT V							
34.	Introduction to logic and logic programming	\checkmark						
35.	Computing with relations	\checkmark		\checkmark				
36.	Programming with Prolog - Introduction	\checkmark						
37.	Data structures in Prolog	\checkmark						
38.	Programming techniques - Control in Prolog	\checkmark		\checkmark				
39.	Cuts – Multi-paradigm languages	\checkmark						
40.	Programming Assignments in PROLOG				\checkmark			

7. Course Assessment Methods								
Sl. No.	Mode of Assessment	Week/Date	Duration	Marks				
1	Assignment 1	1 st week of Aug '17	1 week	5				
2	Cycle Test – 1	4 th week of Aug '17	1 hour	20				
3	Cycle Test – 2	4 th week of Sep '17	1 hour	20				
4	Assignment 2	2 nd week of Oct '17	1 week	5				
5	End Semester Exam	2 nd week of Nov '17	3 hours	50				
			Total	100				

8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

Text Books

- Robert W. Sebesta, "Concepts of Programming Languages", Tenth Edition, Addison Wesley, 2012.
- Michael L. Scott, "Programming Language Pragmatics", Third Edition, Morgan Kaufmann, 2009.
- R. Kent Dybvig, "The Scheme programming language", Fourth Edition, MIT Press, 2009.
- Jeffrey D. Ullman, "Elements of ML programming", Second Edition, Prentice Hall, 1998.
- Richard A. O'Keefe, "The craft of Prolog", MIT Press, 2009.
- W. F. Clocksin and C. S. Mellish, "Programming in Prolog: Using the ISO Standard", Fifth Edition, Springer, 2003.

9. Course Feedback

Student feedback regarding the course will be collected twice -1^{st} week of Sep '17 and 4th week of Oct '17.

10. Course Policy

- Attendance: Minimum 75% is mandatory to write the end semester examination. Students having attendance 65%-74% are eligible for the end semester exam only after justifying their leave. Students have to redo the course, if they have less than 65% percentage of attendance at any cost. Students coming late to the class will not be provided attendance for that hour at any cost.
- Medical certificate or on-duty certificate should be submitted immediately after rejoining the next class.
- Students should turn off electronic devices during classes, such as cell phones, iPods, laptop, etc.
- Academic Honesty: Students disturbing the class, not attentive and students who do malpractices in assignments and test will not be permitted to attend any test commencing thereafter (including the end semester exam).
- Late submission of assignments will be awarded zero mark.

For Senate's Consideration

S. upha (C (Dr. S. Usha Kiruthika)

(Dr. S. Usna Kiruthika)

Course Faculty

(Dr. N. Ramasubramanian) Class Committee Chairperson

(Dr. R. Leela Velusamy) HOD