

Department of Computer Science and Engineering National Institute of Technology Tiruchirappalli

1. Course Outline									
Course Title	Algorithms lab	Algorithms lab							
Course Code	CSLR23	CSLR23							
Programme & Department	B.Tech CSE	No. of Credits	2						
Pre-requisites Course	CSPC21,CSLR21	Faculty Name	Dr. Kunwar Singh Dr. R. Mohan						
E-mail	kunwar@nitt.edu rmohan@nitt.edu	Telephone No.	0431 - 2503212						
Course Type	Lab course	Lab course							
Session Academic Year:	in January - April Ses	January – April Session (Even Semester)							

2.Course Overview

This course mainly covers implementation of different design techniques

3. Course Objectives

- To program brute force, divide and conquer, greedy, dynamic techniques and approximation algorithms etc.

4. Course Outcomes (CO)

- Ability to solve and analyze general algorithms based on space and time complexity
- Ability to implement and empirically compare fundamental algorithms and data structures to real world problems
- Knowledge about different algorithmic paradigms and optimization

	Aligned Programme Outcome (PO)							
5. Course Outcomes (CO)	PO- PO 1 2	PO-	O- PO- 2 3	PO-	PO-	PO-	PO-	PO-
Ability to solve and analyze general algorithms based on space and time complexity	0	М	М	М	S	S	В	М

Ability to implement and empirically compare fundamental algorithms and data structures to real-	S	S	М	М	S	S	М	М
Knowledge about different algorithmic paradigms and optimization	S	S	М	М	S	S	М	М

S = 0.6 M = 0.4 B = 0.0

SL.No	Title		Туре		Mode of delivery			
		L	Т	C &T	PP T	VL/V C	DEMO	
1.	Algorithms based on number theory such as Euclidean algorithm etc.						√	
2.	Divide and conquer						1	
3.	Divide and conquer						V	
4.	Priority queue programs						1	
5.	Greedy algorithms						V	
6.	Dynamic programming						V	
7.	Dynamic programming						V	
8.	Graph algorithms: BFS, DFS						V	
9.	Graph algorithms: Prims, Kruskal, Dijkstra's algorithm						√	
10.	Approximation algorithms				1		V	

7. Course Assessment Methods								
SI. No.	Mode of Assessment	Week/Date	Duration	Marks				
1	Continuous assessment	Every week	3 hour	40				
2	Test 1	5 th week	2 hour	20				
3	Test 2	9 th week	2 hour	20				
4	Test 3	13 th week	2 hour	20				
			Total	100				

8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

Text Books:

1. T. Cormen, C. Lieserson, R. Rivest, and C. Stein, "Introductions to Algorithms", Prentice-Hall/India, 3rd edition, 2009

COURSE EXIT SURVEY (Mention the ways in which the feedback about the course is assessed and indicate attainment also)

- Feedbacks are collected before the end semester exam in the feedback forms.
- Suggestions from the students are incorporated for making the course more understanding and interesting.
- Students, through their class representative may give their feedback at any time to the course faculty which will be duly addresses.
- Students may also give their feedback during class committee meeting

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- Attendance: Minimum 75% is mandatory to write the end semester examination. Students having attendance 65%-74% are eligible for the end semester exam only after attending the extra classes and submitting assignments. Students have to redo the course, if they have less than 65% percentage of attendance.
- Medical certificate or on-duty certificate should be submitted immediately after rejoining.
- · Please turn off electronic devices during lab sessions, such as cell phones, iPods, and laptops.

For Senate's Consideration

f(Dr. N. RAMASUBRAMANIAN) (Dr. R.LEELA VELUSAMY)

Course Faculty

Class Committee Chairperson

HOD / CSE