

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTLINE			
Course Title	Advanced Digital	Design	
Course Code	CS616	No. of Credits	3
Department	CSE	Faculty	Dr. N. Ramasubramanian
Pre-requisites	NIL		
Course Code			
E-mail	nrs@nitt.edu	Telephone No.	0431-2503204
Course Type	Core co	urse	✓ Elective course
COURSE OVERVIE	SW		
COOKSE OVERVIE	.VV		
sequential circuit Moore models, s sequential circuits, COURSE OBJECTI To understa shifters and To apply log	ches, flip-flops, RON design are treated, state diagrams and and races and hazar	I and RAM and including finite st state tables, ords. ng blocks, logic figues, including Karamatan	combinational. Sequential also reviewed. Topics in ate machines, Mealy and ptimization, asynchronous gates, adders, multipliers, arnaugh Maps pic design
COURSE OUTCOM	ES (CO)		
Course Outcomes			Aligned Programme Outcomes (PO)
memory de subsystems	nderstand the use	ents in complex	PO- 1
logic circuits	now how to design sir and logic controllers		PO-1, PO-6
 Acquire skill for basic dig 	set to develop the nital systems	ecessary software	PO-8

S. No.	No. Week Topic 1 1 Review of Combinational circuit design		Mode of Delivery Pen-Board	
1				
2	1	Sequential logic design	Pen-Boar	
3	1	Structural models of combinational logic Propagation delay	Pen-Boar	
4	2	Behavioral Modeling Boolean equation based behavioral models of combinational logic	Pen-Board	
5	2	Cyclic behavioral model of flip-flop and latches	PPT	
6	2	A comparison of styles for behavioral modeling	PPT	
7	3	Design documentation with functions and tasks	PPT	
8	3	Introduction to synthesis and Synthesis of combinational logic	PPT	
9	3	Synthesis of sequential logic with latches	PPT	
10	4	Three-state devices and bus interfaces	PPT	
11	4	Synthesis of sequential logic with flip-flops	PPT	
12	4	Registered logic and State encoding	PPT	
13	5	Synthesis of gated clocks and clock enables and Anticipating the results of synthesis along with Resets	PPT	
14	5	Synthesis of loops, Design traps to avoid and Divide and Conquer: partitioning a design	PPT	
15	5	Design and Synthesis of Datapath Controllers	PPT	
16	6	Partitioned sequential machines and Design Example: Binary counter		
17	6	Design and synthesis of a RISC stored-program machine for Processor, ALU, Controller	PPT	
18	6	Instruction Set, Controller Design and Program Execution	PPT	
19	7	Design Example UART - Operation, Transmitter, Receiver.	PPT	
20	7	Programmable logic devices		
21	7	Storage devices		

22	8	Programmable Logic Array (PLA) , Programmable	PPT
		Array Logic (PAL)	
23	8	Programmability of PLDs and Complex PLDs	
24	8	Introduction to Altera and Xilinx FPGAs	
25	9	Algorithms, Nested loop programs	PPT
26	9	data flow graphs with Examples	PPT
27	9	Design Example of Pipelined Adder and Pipelined FIR Filter	PPT
28	10	Circular buffers and FIFOs and Synchronization across clock domains	PPT
29	10	Functional units for addition, subtraction, multiplication and division	PPT
30	10	Multiplication of signed binary numbers and fractions	PPT
31	11	Postsynthesis Design Validation and	
32	11	Postsynthesis Timing Verification	
33	11	Elimination of ASIC Timing Violations	
34	12	False Paths and Dynamically Sensitized Paths	PPT
35	12	System Tasks for Timing Verification	PPT
36	12	Fault Simulation and Testing – Fault Simulation	PPT
37	13	Lab exercises using Xilinx.	PPT
38	13	Fault Simulation with Verifault-XL	PPT
39	13	Lab exercises using Xilinx.	PPT
40	13	Lab exercises using Bluespec	PPT

S.No	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Cycle Test I	As per Academic Schedule	1 Hr	20%
2.	Cycle Test II	As per Academic Schedule	1 Hr	20%
3.	Assignment	Before End Sem Exam	~1 Week	10%
4.	End Sem Exam	As per Academic Schedule	3 Hrs	50%

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- Michael D. Ciletti, "Advanced Digital Design with the VERILOG HDL, 2nd Edition, Pearson Education, 2010.
- 2. Samir Palnitkar "Verilog HDL", 2nd Edition, Pearson Education, 2003.
- 3. Stephenbrown, "Fundamentals of Digital Logic with Verilog", McGraw-Hill-2007.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

On-line Feedback

Live Feedback in class

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Academic honesty

Attendance Minimum 75% Mandatory

ADDITIONAL COURSE INFORMATION

Students can meet faculty for discussion and queries any time during working hours.

FOR SENATE'S CONSIDERATION

Course Faculty

CC-Chairperson

HOD

3/1/2017