

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OUTLINE TEMPLATE				
Course Title	Parallel Computer Architecture			
Course Code	CS605	No. of Credits	3	
Department	CSE	Faculty	Dr. N. Ramasubramanian	
Pre-requisites Course Code	NIL			
E-mail	nrs@nitt.edu	Telephone No.	0431-2503204	
Course Type	Core course	Elective co	ourse	
COURSE OVERVIEW				

Parallel Computer Architecture course gives an emphasis on the design aspects of parallelism that can be achieved through different techniques. It also gives a detailed overiew of different ways to improve the performance gain in computer systems. The study of recent processor architectures and architectural support for different classes of processors is theprime focus of this course.

COURSE OBJECTIVES

- To understand the principles of underlaying parallel computer architecture
- To understand the design of parallel computer systems including multi-core architectures
- To assess the communication and computing capabilities of parallel architectures and to predict the performance of these systems
 COURSE OUTCOMES (CO)

COURSE OUTCOMES (CO)		
Aligned Programme Outcomes (PO)		
PO- 1		
PO-1, PO-6		
PO-8		

COURSE TEACHING AND LEARNING ACTIVITIES				
S. No. Week		Торіс	Mode of Delivery	
1	1	Introduction, Defining Computer Architecture, Trends in Technology	Pen-Board	
2	1	Trends in Power in Integrated Circuits – Trends in Cost	Pen-Board	
3	1	Dependability, Measuring, Reporting and Summarizing Performance	Pen-Board	
4	2	Performance equation, Amdhal's Law, Quantitative Principles of Computer Design	Pen-Board	
5	2	Problems on Performance equation, Amdhal's Law	PPT	
6	2	Basic and Intermediate concepts of pipelining	PPT	
7	3	Pipeline Hazards, Dealing with Hazards, Pipelining Implementation issues	PPT	
8	3	Instruction-Level Parallelism: Concepts and Challenges	PPT	
9	3	Basic Compiler Techniques for Exposing ILP	PPT	
10	4	Basic Compiler Techniques for Exposing ILP contd.	PPT	
11	4	Problems and discussions	PPT	
12	4	Reducing Branch Costs with Prediction – Overcoming Data Hazards with Dynamic Scheduling	PPT	
13	5	Dynamic Scheduling: Algorithm and Examples – Hardware-Based Speculation	PPT	
14	5	Exploiting ILP Using Multiple Issue and Static Scheduling	PPT	
15	5	Exploiting ILP Using Dynamic Scheduling	PPT	
16	6	Multiple Issue and Speculation, Problems and discussions	PPT	
17	6	Studies of the Limitations of ILP – Limitations on ILP for Realizable Processors	PPT	
18	6	Hardware versus Software Speculation	PPT	
19	7	Using ILP Support to Exploit Thread-Level Parallelism	PPT	
20	7	Problems and discussions	PPT	
21	7	Multithreading: Increasing thread level parallelism to improve uniprocessor throughput	PPT	
22	8	Case Studies given in end of chapter	PPT	

23	8	Cache Performance – Six Basic Cache Optimizations	PPT
24	8	Ten Advanced Optimizations of Cache Performance	PPT
25	9	Ten Advanced Optimizations of Cache Performance contd.	PPT
26	9	Virtual Memory – Protection and Examples of Virtual Memory	PPT
27	9	Memory Technology and Optimizations	PPT
28	10	Protection: Virtual Memory and Virtual Machines – The Design of Memory Hierarchies	PPT
29	10	Centralized Shared-Memory Architectures – Performance of Shared-Memory Multiprocessors	PPT
30	10	Distributed Shared Memory concept	PPT
31	11	Cache coherence and basics	PPT
32	11	Snoopy Bus Protocol for cache coherence	PPT
33	11	Directory Based Coherence, different types of directories	PPT
34	12	Case studies and problems given on case studies for cache coherence	PPT
35	12	Basics of Synchronization – Models of Memory Consistency	PPT
36	12	Introduction to Warehouse-Scale Computers	PPT
37	13	Programming Models for Warehouse-Scale Computers	PPT
38	13	Computer Architecture of Warehouse-Scale Computers	PPT
39	13	Physical Infrastructure and Costs of Warehouse-Scale Computers	PPT
40	13	Discussions and Problem/ Doubt solving	PPT

COURSE ASSESSMENT METHODS					
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage	
1.	Cycle Test I	As per Academic Schedule	1 Hr	20%	
2.	Cycle Test II	As per Academic Schedule	1 Hr	20%	
3.	Assignment	Before End Sem Exam	~1 Week	10%	
4.	End Sem Exam	As per Academic Schedule	3 Hrs	50%	

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc

1. David.A.Patterson, John L.Hennessy, "Computer Architecture: A Quantitative approach", Elsevier, 5 th Edition 2012.

2. K.Hwang, Naresh Jotwani, "Advanced Computer Architecture, Parallelism, Scalability,

Programmability", Tata McGraw Hill, 2 nd Edition 2010.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

On-line Feedback Live Feedback in class

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Academic honesty

Attendance Minimum 75% Mandatory

ADDITIONAL COURSE INFORMATION

Students can meet faculty for discussion and queries any time during working hours.

FOR SENATE'S CONSIDERATION

Course Faculty _____ CC-Chairperson _____ HOD _____