DEPARTMENT OF COMPUTER APPLICATIONS ## NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI | Course Title | Cloud Computing | | | |---|--------------------------|-------------------|---------------| | Course Code | CAS7C3 | No. of
Credits | 3 | | Department | Computer
Applications | Faculty | Dr. R. Eswari | | Pre-requisites
Course Code | - | | | | Course
Teacher(s)/Tutor(s)
E-mail | eswari@nitt.edu | Telephone
No. | 0431-2503744 | | Course Type | Elective course | | | #### COURSE OVERVIEW The course provides introduction to cloud computing, virtualization, legacy hardware and software and approaches to transitioning Information Technology from legacy systems to a shared and managed service model. Various Cloud Computing models will be covered including Private, Public, Hybrid and Community Clouds. Management of Cloud Computing Providers using automated tools and Service Level Agreements will be discussed, along with security and privacy considerations. Students will learn how to effectively plan, implement and manage Cloud Computing in virtual data centers and study VMware and XEN Virtualization software. ### **COURSE OBJECTIVES** - To understand the various concepts of Distributed and Cloud Computing - To study the architecture and service models in cloud computing # COURSE OUTCOMES - Be aware of features of cloud computing - Understand various performance criteria to evaluate the quality of the cloud architecture # COURSE TEACHING AND LEARNING ACTIVITIES | S.No. | Week | Topic | Mode of Delivery | |-------|------|---|------------------------------------| | 1 | 1 | Scalable Computing, Technologies for
Network Based Systems, System Models for
Distributed and Cloud Computing, Software
Environments for Distributed and Clouds
Performance, Security and Energy Efficiency | Power Point Presentation
-4 hrs | | 2 | 2 | Virtualization concepts: Implementation Levels of Virtualization | Power Point Presentation -3 hrs | | |----|----|--|------------------------------------|--| | 3 | 3 | Virtualization Structures Tools and mechanisms, Virtualization of CPU, Memory and I/O Devices | Power Point Presentation
-3 hrs | | | 4 | 4 | Virtual Clusters and Resource Management
Virtualization for Data Center Automation,
Introduction to Various Virtualization OS
Vmware, KVM, Xen. | Power Point Presentation
-3 hrs | | | 5 | 5 | Service Oriented Architecture for Distributed
Computing: Services and SOA, Message
Oriented Middleware Portals and Science
Gateways | Power Point Presentation
-3 hrs | | | 6 | 6 | Discovery Registries Metadata Workflow in SOA, Cloud Computing and Service Models Data center Design and Interconnection Networks | Power Point Presentation
-3 hrs | | | 7 | 7 | Architectural Design of Compute and Storage
Clouds, Public cloud Platforms, Inter cloud
Resource Management Cloud | Power Point Presentation
-3 hrs | | | 8 | 8 | Security and Trust Management, Cloud
Programming and Software Environments
Cloud Programming and Software,
Environments | Power Point Presentation
-3 hrs | | | 9 | 9 | Features of Cloud and Grid Platforms Parallel and Distributed Paradigms | Power Point Presentation -3 hrs | | | 10 | 10 | Programming Support of Google App Engine
Amazon AWS | Power Point Presentation -3 hrs | | | 11 | 11 | Microsoft Azure
Emerging Cloud Software Environments | Power Point Presentation -3 hrs | | # COURSE ASSESSMENT METHODS | S.No. | Mode of
Assessment | Week/Date | Duration | % Weightage | |-------|-----------------------|-----------------------------------|----------|-------------| | 1 | Test 1 | 4 th week of
August | 1 Hr | 20 | | 2 | Test 2 | 3 rd week of october | 1 Hr | 20 | | 3 | Assignment | Week 8 | 1 week | 10 | | 4 | End Semester
Exam | At the end of course | 3 hrs | 50 | #### **ESSENTIAL READINGS:** #### Reference Books - 1. Kai Hwang, Geoffrey C.Fox, and Jack J. Dongarra, "Distributed and Cloud Computing", Elsevier India Private Limited, 2012. - 2. Foster and Kesselman, "The Grid: Blueprint for a New Computing Infrastructure", Morgan Kauffman publishers Inc. 2004 - 3. Coulouris, Dollimore and Kindber, "Distributed System: Concept and Design", Fifth Edition, Addison Wesley, 2011. - 4. Michael Miller, "Cloud Computing" Dorling Kindersley India, 2009. - 5. Anthony T. Velte, Toby J. Velte and Robert Elsenpeter, "Cloud computing: A practical Approach", McGraw Hill,2010 # COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also) - The students through the class representative may give their feedback at any time to the course faculty which will be duly addressed. - The students may also give their feedback during Class Committee meeting. # COURSE POLICY (including plagiarism, academic honesty, attendance, etc.) Plagiarism The students are expected to come out with their original solution for problems given as assignment, and tests/examinations. Attendance 100% is a must. However, relaxation upto 25% will be given for leave on emergency requirements (medical, death, etc.) and representing institute events. # ADDITIONAL COURSE INFORMATION The Course Coordinator is available for consultation office from 4 pm to 5 pm every day. Students can access the course in Moodle site http://egov.nitt.edu/moodle #### FOR SENATE'S CONSIDERATION Dr.R.Eswari Course Faculty (Dr. U.Srinivasulu Reddy) Class Committee Chairperson (Dr.A. Vadivel) HoD