

DEPARTMENT OF CIVIL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY

TIRUCHIRAPPALLI - 620 015, TAMIL NADU, INDIA Phone: +91-431-2503150 (O), +91-431-2503166 (Direct), Fax: +91-431-2500133 (O/o the Director)

COURSE PLAN (PART I) Name of the programme and specialization B.Tech/Civil Engineering Course Title Fluid Mechanics Laboratory Course Code 2 No. of Credits CELR12 Course Code of Pre-requisites Session Section (if, applicable) July / January 2020 Name of the Faculty Civil Engineering Department Mr. Samjebadurai.C 9940839398 E-mail samjeba@nitt.edu Telephone No. Course Coordinator(s)(if, applicable) E-mail Telephone No. Course Type Core Elective Open Elective Laboratory

COURSE CONTENT (Approved in Senate)

- 1. Determination of pipe friction
- 2. Calibration of flow meters Venturimeter
- 3. Calibration of flow meters Orifice meter
- 4. Determination of discharge coefficients for notches
- 5. Centrifugal pump
- 6. Submersible pump
- 7. Reciprocating pump
- 8. Jet pump
- 9. Screw pump
- 10. Francis Turbine
- 11. Pelton Turbine

COURSE LEARING OBJECTIVES

- 1. To understand the flow measurement in a pipe flow
- 2. To determine the energy loss in pipe flow
- 3. To study the characteristics of turbines
- 4. To study the characteristics of pumps

After successful completion of the course,

COURSE OUTCOMES (CO)

Course Outcomes

the stuc	dents should be capable to :														
CO1	Measure discharge in pipes	PO	1	2	3	4	5	6	7	8	9	10	11	12	7
CO2	Determine the energy loss in conduits	CO1	٠ ٧	_					,			10		12	
CO3	Demonstrate the characteristics	CO2	-	٧		٧ ٧		.,							
	curves of pumps	CO3	-			V		٧				-			-
CO4	Demonstrate the characteristics curves of turbines	CO4				V		V							
		CO5	٧	٧											
CO5	Carry out discharge														
	measurements in open channel														

Aligned Programme Outcomes(PO)

COURSE OVERVIEW

Performing Laboratory methods to measure discharge, energy loss and analyse the efficiency, optimum operating conditions for pumps and turbines.

COURSE PLAN (PART II)

COOMSE	TEACHING AND ELANIMIST ACTIVITIES	
Sl.No.	Experiment	Mode of Delivery
1.	Determination of Pipe friction	Practical*
2.	Determination of Discharge coefficient for V-notch	Practical
3.	Submersible pump	Practical
4	Centrifugal Pump	Practical
5.	Reciprocating Pump	Practical

6.	Jet Pump	Practical
7.	Screw Pump	Practical
8.	Calibration of Orifice meter	Practical
9.	Calibration of Venturi meter	Practical
10.	Francis Turbine	Practical
11.	Pelton Turbine	Practical

^{*} Group wise division is made in the beginning of the session for performing experiments and will proceed the experiments in cycles.

COURSE ASSESSMENT METHODS

SI NIS Mark / Date Duration				% Weightage	
SI. No.	Mode of Assessment	Week / Date	Duration	60%	
1.	Assessment 1 (Continuous Assessment on each	Weekly	NA	60%	
2.	session) Assessment 2	During the session	NA	10%	
	(Quiz)	5 th week of	180 Minutes	30%	
<i>3</i> .	End Assessment	April 2020		ata the attainment also)	

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

It is proposed to take feedback from the students to evaluate the execution of the course

- Direct feedback from the students by face-to-face meeting individually and as the class as a whole.
- Feedback from the students during class committee meetings
- Exit survey from the students at the end of the session

COURSE POLICY (COMPENSATION ASSESSMENT)

- Attending all the assessments (Assessment 1 to 3) is MANDATORY for every student.
- All the experiments should be completed and recorded in the observation note and laboratory record.
- Compensation class (Only for Assessment 1) will be arranged at the end of the session in which students can perform the missed experiments. Students with valid reasons and prior permissions are only allowed to attend repetition class.

ATTENDANCE POLICY

The attendance will be taken in all the contact hours. Students are encouraged to attend all the classes without absence. Also, the students are encouraged to participate in various co-curricular and extracurricular activities to enrich the academic / campus life.

- a) At least 75% attendance in the course is mandatory.
- b) A maximum of 10% shall be allowed under On Duty (OD) category
- Students with less than 65% of attendance shall be prevented from writing the end assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY AND PLAGIARISM

Academic Dishonesty

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty
- b) Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero
- The department disciplinary committee constituted with the faculty member, PAC Chair person, and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student found guilty,

- Turing someone else work as your own without proper consent
- Providing incorrect information about the source of a quotation

ADDITIONAL COURSE INFORMATION

- 1. All the students are advised to check their NIT-T webmail regularly to know the updates.
- Queries / Clarifications / Discussions (if required) may be E-mailed to me / contact me during working hours with prior intimation.

FOR APPROVAL

Mr. Samjebadurai.C

Course Faculty

Chairman (Class Committee)

HoD / Civil Engineering