

DEPARTMENT OF CIVIL ENGINEERING

COURSE PLAN – PART I					
Name of the programme and specialization	B.Tech. /Civil Engineering				
Course Title	Marine Foundation Engineering				
Course Code	CEPE31	No. of Credits	3		
Course Code of Pre- requisite subject(s)					
Session	January, 2019/ VI SEM	Section (if, applicable)	Both A & B		
Name of Faculty	Dr.K.Muthukkumaran	Department	Civil Engg.		
Official Email	kmk@nitt.edu	Telephone No.	04312503168		
Name of Course Coordinator(s) (if applicable)					
Official E-mail		Telephone No.			
Course Type	Elective course $$	•	•		

Syllabus (approved in BoS)

Offshore soil investigation: General characteristics of offshore soil exploration – sampling using free corer, gravity corer, tethered systems and manned submersibles – deep penetration sampling using wire line techniques – sampling disturbances – mechanical and environmental - In-situ determination of strength of submarine soils – penetrometer, piezocone, vane and pressure meter techniques – penetration tests from tethered submersible platforms, manned submersibles and using wire line techniques - classification of marine soils – relative distribution of marine soils in the different marine regions – general characteristics of marine deposits in some specific locations and in the Indian sub continent.

Foundations for gravity structures: Types of gravity structures – Installation techniques – movement of gravity structures – settlement of soil beneath gravity structures – stress distribution beneath gravity structures – stability of gravity structures under static and cyclic loads.

Foundation for jacket type structures: Types – installation techniques – design considerations – axial and lateral load capacity of piles – lateral load deformation behaviour of piles – calculation of bearing capacity of piles- design of piles subjected to lateral loads – Reese-Matlock method and p-y curves method.

Foundations for jack up platforms: Types of jack up platforms – piles and mat supported – spud cans – different types – installation techniques – techniques for removal of jack ups – stability of jack up platforms –determination of penetration of supports – stability under lateral loads –stability under static and cyclic load effects.

Sea bed anchors, submarine pipe lines: General introduction to sea bed anchors, moorings,

submarine pipe line etc., - general design considerations (brief outline only) – geotechnical aspects in the design and installation of sea bed anchors, moorings, submarine pipelines etc.

REFERENCE BOOKS

1. Arous, D.A. (Ed.), Offshore Site Investigation, Graham Trotman, 1985

2. Chaney, R.C and Demars, K.R , Strength Testing of Marine Sediments – Laboratory and Insitu Measurements, ASTM, STP-883, 1985

3. George P. and Wood D., Offshore Soil Mechanics, Cambridge University Press.

4. Pierre Le Tirant, Sea Bed Reconnaissance and offshore Soil Mechanics for the Installation of Petroleum Structures, Gulf Publ. Company, 1979

5. Poulos, H.G and Davis, E.H, Pile Foundation Analysis Design, John Wiley, New York, 1980 6. David Thompson and Diane Jarrah Beasley (Ed.), Handbook for Marine Geotechnical

Engineering, NAVFAC, ENGINEERING SERVICE CENTER, Port Hueneme, California, 2012.

COURSE OBJECTIVES

- > To emphasize the importance of offshore soil investigations for offshore structures
- To analysis the response of foundations of gravity structures under offshore environmental loading
- To analysis the foundation response of jacket and jack-up platforms under static and cyclic loading
- > To provide a suitable foundation system for mooring structures and offshore pipe lines

MAPPING OF COs with POs				
Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)			
 Recommend suitable offshore investigation techniques for the proposed project and able to provide appropriate soil design parameters 	1,2,3,4,5,6,7,8			
2. Perform foundation analysis for gravity structures, jacket and jack-up kind of offshore structures	1,2,3,4,5,6,7			
3. Analysis suitable anchor system for mooring structures and able to provide foundation system for offshore pipeline.	1,2,3,4,5,6,7			

COURSE PLAN – PART II

COURSE OVERVIEW

Marine Foundation Engineering (MFE) is a sub-field of Geotechnical Engineering. It is concerned with geotechnical investigation, suitable foundation analysis and recommendation, suitable anchor analysis and recommendation for mooring systems, seabed stability and many other human made structures like offshore platforms, offshore wind farms, artificial island, submarine pipe lines in the sea. All these structures have to be supported by the seabed soil where the seabed soil may prone to many Geohazards. Therefore, the seabed soil characterization considering the Geohazards aspects is very important for any offshore structures. Due to the gradual depletion of hydrocarbon reserves onshore or near the

coastlines, new fields are being developed at greater distances in the offshore and in deeper water with a suitable adaptation of offshore geotechnical investigations. More than 7000 offshore platforms are operating water depth greater than 2000m.

The offshore structures are exposed to various environmental loads like wind, waves, currents, sea ice and icebergs over and above the regular dead and live load. Almost all the environmental loads are primarily in the horizontal direction and many of these loads are get transmitted to the foundation (the seabed). Therefore, carrying out a suitable offshore geotechnical investigation and recommending an appropriate foundation system for the proposed offshore structure is foremost important for any offshore project. This course will focus on the importance of offshore Geotechnical investigations and offshore foundation system analysis.

COUR	COURSE TEACHING AND LEARNING ACTIVITIES(Add more rows)				
S.No.	Week/Contact Hours	Торіс	Mode of Delivery		
1	Week -1/ 3 hrs	General Introduction to coastal and offshore structures and role of offshore geotechnical investigation in offshore structures.	PPT		
2	Week -2/ 3 hrs	Offshore soil investigation: General characteristics of offshore soil exploration – sampling using free corer, gravity corer, tethered systems and manned submersibles	PPT		
3	Week -3/ 3 hrs	deep penetration sampling using wire line techniques – sampling disturbances – mechanical and environmental - In- situ determination of strength of submarine soils	PPT		
4	Week -4 / 3 hrs	penetrometer, piezocone, vane and pressure meter techniques – penetration tests from tethered submersible platforms, manned submersibles and using wire line techniques - classification of marine soils – relative distribution of marine soils in the different marine regions – general characteristics of marine deposits in some specific locations and in the Indian sub continent.	PPT		
5	Week -5 / 3 hrs	Foundations for gravity structures: Types of gravity structures – Installation techniques – movement of gravity structures	PPT/ Black board		
6	Week -6 / 3 hrs	Settlement of soil beneath gravity structures – stress distribution beneath gravity structures	PPT/ Black board		

		Determinat	lion of penetra	ation of		
13	Week -13 / 3 hrs	supports – stability under lateral loads – stability under static and cyclic load effects.			PF	PT/ Black board
		effects.				
		effects.				
13	vveeк - 13 / 3 nrS	effects.	iects.		PP1/ Black board	
13	Week -13 / 3 hrs	stability under static and cyclic load			PPT/ Black board	
13	Week -13 / 3 hrs	supports – stability under lateral loads – stability under static and cyclic load				
13	Week -13 / 3 hrs	supports – stability under lateral loads –				
40	Determination of penetration of supports – stability under lateral loads –					
		Determination of penetration of supports – stability under lateral loads –				
		platforms Determination of penetration of				
12	Week -12 / 3 hrs	removal of jack ups – stability of jack up platforms			PPT/ Black board	
12	Week -12 / 3 hrs removal of iack ups – stability of iack up				PPT/ Black board	
		types				
11	Week -11 / 3 hrs	Types of jack up platforms – piles and mat supported – spud cans – different types			PF	PT/ Black board
11		Foundations for jack up platforms:				
	curves method					
10	Week -10 / 3 hrs	design of p	iles subjected to lat Matlock method	eral loads and p-y		Black board
		Calculation	of bearing capacit	y of piles-		
9	Week -9 / 3 hrs	Week -9 / 3 hrs lateral load deformation behaviour o piles				Black board
_		Axial and lateral load capacity of piles –				
8	Week -8 / 3 hrs	Foundation for jacket type structures: Types – installation techniques – design considerations			PF	PT/ Black board
		Foundation	for indicat time of			
7	Week -7 / 3 hrs	Stability of gravity structures under static and cyclic loads.				PT/ Black board
		Stability o	of arovity structur	as under		

СРА	Compensation Assessment	15 th Week	1 hr	20
5	Final Assessment	16 th – 17 th Week	3 hr	40

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Class committee meetings.
- 2. Mid semester -feedback will be collected in the class room
- 3. Online Feedback forms submission through MIS.

COURSE POLICY (including compensation assessment to be specified)

PASSING MINIMUM

The passing minimum shall be (Peak/3) or (Class Average/2) whichever is lower

COMPENSATION ASSESSMENT

Retest would only be given to those students who have missed either Cycle Test 1 or Cycle Test 2 on genuine grounds. The portions of the retest would include the portions of both Cycle Test 1 and Cycle Test 2 combined.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

The Course Coordinator is available for consultation during office hours at Civil Engineering Department, Room No. C-8.

Queries can also be emailed to the Course Coordinator directly at kmk@nitt.edu

FOR APPROVAL

Course Faculty CC- Chairperson HOD