DEPARTMENT OF CIVIL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLAN	I – PART I			
Name of the programme and specialization	B.Tech. Civil Engi	B.Tech. Civil Engineering			
Course Title	ADVANCED STEE	ADVANCED STEEL STRUCTURAL ELEMENTS			
Course Code	CEPC27	No. of Credits	4		
Course Code of Pre- requisite subject(s)	CEPC24				
Session	July 2018	Section (if, applicable)	A		
Name of Faculty	Dr.P. Jayabalan	Department	Civil Engineering		
Email	pjeya@nitt.edu	Telephone No.	0431-2503157		
Name of Course Coordinator(s) (if, applicable)		13.5			
E-mail		Telephone No.			
Course Type	Core cours	Core course Elective course			
Syllabus (approved in Bos	3)				
Introduction to beam-column	n - behavior - strength i	nteraction - design	of beam column - beam		
column subjected to combin	ned forces - column ba	ases - slab base - ç	gusseted base - mome		
resistant base plate.	/				
Welded plate girders – ana	ysis and design using	IS800-2007 - curta	nilment of flange plates		
stiffeners – Introduction to h	ybrid girders - analysis	and design of gant	ry girder.		
Design of industrial building	- roofing, cladding an	d wall material - st	ructural components an		
framing - types of roof tru	sses - components -	wind load estimat	ion for different type of		
structures for various zones.					
Approximate analysis of ind	ustrial bents/PEB - de	sign of purlins and	wall girts using Channe		
and Angle sections; cold for	med steel purlin – Des	sign of wind bracing	ıs – wind girders – gabl		
columns Analysis and design	of framed connection				

Note: Assignments include the design and drawings of various steel structures.

COURSE OBJECTIVES

- 1. To study the behavior and design of member subjected to combined forces
- 2. To understand the analysis procedure and design of base plate subjected to different loading conditions
- 3. To study the design of Gantry girder, welded plate girder, stiffeners and connections
- 4. To calculate the wind forces on various types of structures
- 5. To understand the design of industrial buildings/bents/PEB
- 6. To understand the design of moment resisting connections used in steel frames

COURSE OUTCOMES (CO)

Co	ourse Outcomes	Aligned Programme Outcomes (PO)
1.	Design eccentrically loaded compression members (Beam-Columns) and their base plates	a,b,c,d
2.	Design welded plate girder and other components	a,b,c,d
3.	Design Gantry girder for industrial structures	a,b,c,d
4.	Calculate the wind load acting on various structures to be built in various locations	a,b,c,d,g
5.	Design Industrial structures and their components such as girts, wind girders, bracings systems, purlins etc	a,b,c,d,g,k,f

COURSE PLAN - PART II

COURSE OVERVIEW

The course begins with the design of Beam-Column. The behaviour and strength interaction of beam-columns are taught to be in class. A general description is given about the plate girder behaviour in terms of elastic buckling of web in shear and bending, and web in tension field action. This is followed by some detailed worked examples on plate girders as per IS 800. Students are introduced to estimate the wind loads on structures and design of industrial structures. Finally, students are introduced to a moment connections accordance with IS 800.

COURSE TEACHING AND LEARNING ACTIVITIES					
S.No.	Contact Hours	Topic	Mode of Delivery		
1	1	Introduction to Beam-Column	Lecture / PPT		
2	2,3	Strength Interaction	Lecture / PPT		
3	4,5	Design of Beam-Column	Lecture / PPT		
4	6,7	Column bases	Lecture / PPT		

5	8 to 14	Welded plate girders	Lecture / PPT
6	15 to 17	Gantry girder	Lecture / PPT
7	18 to 24	Wind load estimation	Lecture / PPT
8	25 to 33	Design of industrial building	Lecture / PPT
9	34 to 39	Approximate analysis of PEB	Lecture / PPT
10	40 to 45	Design of Framed Connections	Lecture / PPT

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Assessment 1	Week 7	1 Hour	20
2	Assessment -2	Week 15	1 Hour	20
3	Assignment/Tutorials/Surprise Quiz (40% weightage)		•	10
CPA	Compensation Assessment*	Week 18	1 Hour	Corresponding Weightage
6	Final Assessment *	Week 19	3 Hours	50

*Minimum Pass mark has to be fixed as per Institute Policy.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Feedback from students will be obtained through MIS.

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone etc)

All the students are advised to attend the class regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/any other information regarding this course) will be intimated in the Class only.

ATTENDANCE

- 1. Attendance will be taken by the faculty in all the contact hours. Every student should maintain **minimum of 75** % **physical attendance** in these contact hours.
- 2. A maximum of 10% shall be allowed under On Duty (OD) category
- 3. Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

COMPENSATION ASSESSMENT

• If any student is not able to attend any of the internal assessments due to genuine reason, the student is permitted to attend compensatory assessment with 20% weightage.

ACADEMIC HONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- > The departmental disciplinary committee including the course faculty member, PAC

chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes

ADDITIONAL INFORMATION

- 1. The faculty is available for consultation at times as per the intimation given by the faculty.
- 2. Queries (if required) to the course teacher shall only be emailed to the email id specified by the teacher(pjeya@nitt.edu)

FO	D	A D	DD	OI	/AI	1
		МГ	FI	U	M	ᆫ

Course Faculty _

CC-Chairperson