Department of Civil Engineering

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEMPLATE			
Course Title	Engineering Mechanics		
Course Code	CE 102	No. of Credits	3
Department	CIVIL ENGINEERING	Faculty	Ms.R.Gurulakshmi
Pre-requisitesCourse Code	NIL		
Course Coordinator(s)	-		
(if, applicable)			
Other CourseTeacher(s)/Tutor(s) E-mail		Telephone No.	
Course Type	Core course	Elective course	¥. %
	L		
COURSE OVERVIEW	4		
This course tries to develop the stu-	dents in engineering to analys	e any problem in	a simple and logical
manner based on well understood	d basic principles. The emp	ohasis will be g	given on the correct
understandings of the principles o	f mechanics and their applic	cation in the sol	ution of Engineering
problems.			
COURSE OBJECTIVE			
	e of mechanics in the cont	ext of engineeri	ng and conservation
equations.			
	f centroid, centre of gravity and		ia.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	or analyzing the forces in the b		
4. To apply the different pri	nciples to study the motion	of a body, and	d concept of relative
velocity and acceleration.			
	a particle under projectile moti		
6. To identify the basic el equations.	ements of a mechanical	system and wri	ite their constitutive

Cours	e Outcome	Aligned Programme Outcomes (PO)			
			nd analyze the problems b		
		pment of the mechan	g mechanics and to proceed ical systems.	ed to research,	
COUF	RSE TEAC	HING AND LEARN	UNG ACTIVITIES		
S.No	Week	8	Topic		Mode of Delivery
1	Week 1	Mechanics and its	relevance, concepts of fo	Black board C	
2	Week 2	laws of mechanics	s of mechanics - parallelogram law, Lami's theorem, of polygon, concept of free-body diagram		
3	Week 3	centroids, center of moment of inertia	oids, center of gravity, area moment of inertia, mass ent of inertia – simple and composite planes		
4	Week 4	Friction-Laws of friction, static friction, rolling friction, Application of laws of friction, ladder friction, wedge friction			Black board
5	Week 5	Assessment-I			
6	Week 6	Body on inclined planes, simple screw jack – velocity ratio, Mechanical advantage, efficiency.			Black board
7	Week 7	Statics-Principles of statics, types of forces, concurrent and non-concurrent forces, composition of forces			29
8	Week 8	Forces in a plane and space, simple stresses and strains, elastic coefficients			Black board
9	Week 9	Kinematics - Fundamentals of rectilinear and curvilinear motion,			Black board
10	Week 10	Assessment-II			
11	Week 11	Application of general equations, concept of relative velocity, analytical and graphical technique.			Black board
12	Week 12	Dynamics Principles of dynamics, D'Alembert's principle		Black board	
13	Week 13	Conservation of momentum and energy		Black board	
14 15	Week 14 Week 15	Vibrations of simple systems Semester Examination			Black board
		COU	RSE ASSESSMENT MET	THODS	
S.No	Mode	of Assessment	Week	Duration	% Weightage
1		ssessment-I	Week 9	1 hour	20 marks
2		sessment-II	Week 15	1 hour	20 marks
3	Assignments: 2-5		Week 6-8 and 12-14	1 week	10 marks
4	Final Examination		Week 18	3 hour	50 marks
5	Total		11 COR 10	Jiloui	100 marks

Text Books:

- 1. Kumar, K. L., Kumar, V. Engineering Mechanics, Pub.: Tata McGraw Hill, 2011.
- 2. Palanichamy, M. S., and Nagan, S., Engineering Mechanics Statics & Dynamics, Pub.: Tata McGraw Hill, 2002.
- 3. Timoshenko, S. and Young, D. H., Engineering Mechanics, Pub.: McGraw Hill, 2006.

Reference Books:

- 1. Popov, E. P., Engineering Mechanics of Solids, Pub.: Prentice Hall, 1998.
- 2. Shames, I. H. and Rao, G. K. M., Engineering Mechanics Static and Dynamics, Pub.: Pearson Education, 2009.
- 3. Beer, F. P., and Johnson Jr. E. R., Vector Mechanics for Engineers, Pub.: McGraw Hill, Year of publication: 2009.
- 4. Rao, J. S. and Gupta, K., Introductory Course on Theory and Practice of Mechanical Vibrations, Pub.: New Age International, 1999

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1. Class committee meetings
- 2. Feedback forms will be collected from the students

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Min percentage of 75% attendance is compulsory for attending the final examination.

ADDITIONAL COURSE INFORMATION

The Course Coordinator's Room No.:

Timings:

Email ID:

Telephone No.:

FOR SENATE'S CONSIDERATION

Course Faculty R. GURULAKSHMI

CC-Chairperson

Grasay 11/2/12 HOD