NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI COURSE PLAN – CE611 TRAFFIC FLOW THEORY

BRANCH: CIVIL ENGINEERING

SPECIALIZATION: Transportation Engineering and Management

SEMESTER: II

Course Title		TEMPLATE TRAFFIC FLOW THEORY			
Course Code	CE611	No. of Credits	3		
Department	Civil	Faculty	Dr. S. Moses Santhakumar		
Pre-requisites	None				
Course Code			•		
E-mail	moses@nitt.edu	Telephone No.	9842450011 (M) 3155 (O)		
Course Type	a tight of	Elective course			

COURSE OVERVIEW

To understand the principles of ITS, and learn macroscopic and microscopic models of traffic flow theory.

COURSE OBJECTIVES

- 1. To be introduced to traffic flow theory
- 2. To study macroscopic and microscopic modeling
- 3. To learn the fundamentals of ITS

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)
1. Ability to analyze the traffic stream parameters	a b d
2. Skill to apply the Microscopic and Macroscopic models	a b c e g i
3. Capability to interpret the significance of ITS under Indian conditions	abcegi.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No. Week		Topic	Mode of Delivery	
1. Week 1		 Syllabus and course content Traffic stream parameters Flow, speed and density 	Chalk and Board	
2.	Week 2	 Fundamental diagram of volume-speed-density surface Variation of the stream parameters Discrete and continuous probability distributions 	Chalk and BoardTutorials	
3.	Week 3	 Merging manoeuvres Critical gaps and lags Probability distributions of gaps and lags 	Chalk and Board	
4.	Week 4	Macroscopic modelsHeat flow analogyFluid flow analogy	Chalk and Board	
5.	Week 5	Shock wavesExamples using u-k diagramBottleneck analysis	Chalk and BoardTutorials	
6.	Week 6	 Microscopic models Application of queuing theory Queue definitions 	Chalk and Board	
7.	Week 7	Cycle Test I	CONTRACTOR STREET	
8.	Week 8	 Regular, random and Erlang arrival patterns Service time distributions Queue discipline and special cases 	Chalk and Board	
9.	Week 9	 Waiting time in single channel queues Practical applications - Problems Extension to multiple channels 	Chalk and BoardTutorials	

			C1 11 1 D 1
10.	Week 10	 Linear car following models Stimulus – Response equation Determination of car following variables 	Chalk and Board
11.	Week 11	 Tracking of vehicle pair Time slice method Practical applications - Problems 	Chalk and BoardTutorials
12.	Week 12	 Traffic stability – local and asymptotic Non-linear car following models Acceleration noise 	• Chalk and Board
13.	Week 13	Cycle Test II	. 593 - 1
14.	Week 14	 Intelligent Transportation Systems Geographical Information System principles Global Positioning System principles 	• PPT
15.	Week 15	Area Traffic ControlAutomatic Toll CollectionSmart Cards	• PPT
16.	Week 16	Intelligent vehicleSensor technologiesCollision Detection System	
17.	Week 17	 Applications in developed countries Intelligent Vehicle – Highway Systems Applications under Indian countries 	

COUR	COURSE ASSESSMENT METHODS					
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage		
1.	Cycle Test 1	Week 7	1 hour	20		
2.	Cycle Test 2	Week 13	1 hour	20		
3.	Assignment 1	Macroscopic models		5		
4.	Assignment 2	Intelligent Transportation Systems		5		
5.	End Semester	Week 18	3 hours	50		

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- 1. Drew, D.R., Traffic Flow Theory and Control, McGraw Hill., 1978.
- 2. TRB, Traffic Flow Theory A Monograph, SR165, 1975.
- 3. Burrough P.A. and Rachel A. McDonell, *Principles of Geographical Information Systems*, Oxford Publication, 2004.
- 4. Sussman, J. M., Perspective on ITS, Artech House Publishers, 2005.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

It is proposed to take feedback from the students, at the end of the semester to evaluate the execution of the course.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Attendance

- The closing date of attendance for the subject is Week 17.
- 100% attendance is desirable for every student, with minimum attendance being 75%.

Grading

• Grading will be done with normalized score.

ADDITIONAL COURSE INFORMATION

- The Course Coordinator is available for consultation during office hours.
- Queries, if any, can also be emailed to the Course Coordinator directly at moses@nitt.edu.

FOR SENATE'S CONSIDERATION

Course Faculty

CC-Chairperson

HOD