DEPARTMENT OF CHEMISTRY NATIONAL INSTITUTE OF TECHNOLOGY: TIRUCHIRAPPALLI | Course titl | e | CH-622-Catalysis | CH-622-Catalysis | | | |--|---|--|------------------|---|--| | Course code | | CH-622 | No. of Credits | 3 | | | Department Course type | | Chemistry Elective course | Faculty | Dr. Arivazhagan Chinnappa
and Dr. Aranganathan V | | | Course Coordinator(s) (if, applicable) | | Dr. Arivazhagan Chinnappa and Dr. Aranganathan V | | | | | E-mail: | *************************************** | agan@nitt.edu and | Phone: | 8056672406 and
9591959720 | | #### **COURSE OVERVIEW** This is an elective course offered for the M.Sc students (I-Semester). Three credits are awarded for the course. Three lectures will be conducted every week by a faculty member in Chemistry dept. ### **COURSE OBJECTIVES** - 1. To introduce the students to the fundamentals of catalysis and characterization techniques in catalysis. - 2. To provide them a brief idea on the homogeneous, heterogeneous and photo catalysis. ## COURSE OUTCOMES (CO) - CO1 learn about the fundamentals in catalysis and characterization techniques - CO2 learn about the homogeneous catalysis - CO3 learn about the heterogeneous catalysis - CO4 learn about the photo catalysis ## COURSE TEACHING AND LEARNING ACTIVITIES | Sl.No. | I-week Sep/2021 Fundamentals: Catalyst - activation energy concept - type comparison of homogeneous & heterogeneous catalysis | | Mode of Delivery C&T, PPT | | |--------|--|--|----------------------------|--| | 1 | | | | | | 2 | II-week
Sep/2021 | Enzyme catalysis - green catalysis - nano catalysis - autocatalysis - phase transfer catalysis - promoters - poisons | C&T, PPT | | | 3 | III-week | Unit II: | C&T, PPT | | | | Sep/2021 | Noyori asymmetric hyd
C-X coupling reactions
Sonogashira, Nozaki-Hi | - Heck, Stille, S | uzuki, Negishi and | | |--------|----------------------|--|-------------------|--------------------|----------------| | 4 | IV-week
Sep/2021 | Ullmann coupling reaction (Rh, Ir) catalyzed C-H at utility -copper and rhodi | C&T, PPT | | | | 5 | I-week
Oct/2021 | Cyclopropanation - I aziridination reactions introduction to N-hetero | C&T, PPT | | | | 6 | II-week
Oct/2021 | <u>UNIT III</u> Characterization of solid catalysts: Surface area - structure - surface morphology - porosity - diameter - particle size | | | C&T, PPT | | 7 | III-week
Oct/2021 | X-ray diffraction - SEM, TEM, X-ray absorption spectroscopy, XPS and Auger spectroscopy to surface studies | | | C&T, PPT | | 8 | IV-week
Oct/2021 | TPD, TPR for acidity and basicity of the catalysts - boundary layer theory -Wolkenstein theory -Balanding's approach | | | C&T, PPT | | 9 | I-week
Nov/2021 | <u>Unit IV</u> Heterogeneous catalysis: Adsorption isotherms - surface area - pore size and acid strength measurements | | | C&T, PPT | | 10 | II-week
Nov/2021 | Porous solids -catalysis by metals - semiconductors and solid acids -supported metal catalysts | | | C&T, PPT | | 11 | III-week
Nov/2021 | Catalyst preparation - catalysts - ammonia synt | C&T, PPT | | | | 12 | IV-week
Nov/2021 | Hydrogenation of carbon monoxide -hydrocarbon conversion - selective catalytic reduction - polymerization. | | | | | 13 | I-week
Dec/2021 | <u>Unit V</u> Porphyrins -phthalocyanines and semiconductor as photo catalysts in photolysis reactions | | | C&T, PPT | | 14 | II-week
Dec/2021 | Generation of hydrogen by photo catalysts - photocatalytic break down of water and harnessing solar energy | | | C&T, PPT | | 15 | III-week
Dec/2021 | Photocatalytic degradation of dyes - environmental applications. | | | C&T, PPT | | COUR | SE ASSESSI | MENT METHODS | | | | | S. No. | Week/Date | Mode of assessment | Portions | Duration | %
Weightage | | 1 | I-week
Oct/2021 | Assignment I | Unit V | One week | 10 | | 2 | III-week
Oct/2021 | Test I | Unit I and II | 1 hour | 25 | | 3 | I-week
Nov/2021 | Seminar | UNIT V | One week | 10 | | | | | a j | | | | 4 | III-week | Test II | Unit III and IV | 1 hour | 25 | |---|---------------------|-------------------|------------------------------|---------|-----| | | Nov/2021 | | | 1987-17 | | | 5 | II-Week
Dec/2021 | Compensation exam | Unit I, II, III,
and IV | 1 hour | 25* | | 6 | IV-week
Dec/2021 | End semester | Unit I, II, III, IV
and V | 3 hours | 30 | | | | | | TOTAL | 100 | #### **ESSENTIAL READINGS** - 1. P. H. Emmet, Catalysis (Vol I and II), Reinhold, 1954. - 2. M. Schlosser, Organometallics in Synthesis, A Manual, John Wiley, 1996. - 3. L. S. Hegedus, Transition Metals in the Synthesis of Complex Organic Molecules, University Science, 1999. - 4. D. K. Chakrabarty and B. Viswanathan, Heterogeneous Catalysis, New Age, 2008. - 5. B. Viswanathan, S. Kannan and R.C. Deka, Catalysts and Surfaces: Characterization Techniques, Narosa, 2010. - 6. M. Kaneko and I. Okura, Photocatalysis: Science and Technology, Springer, 2003. COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also) - 1. Feedback from students during class committee meetings. - 2. Anonymous feedback through questionnaire (as followed previously) ## COURSE POLICY (including plagiarism, academic honesty, attendance, etc.) - 1. 75% attendance is compulsory for writing the end semester exam. - 2. *Those who have failed to appear for Test I & Test II will have to attend the compensation exam, which will be conducted in the 2nd week of November and the compensation exam will cover the entire portions of unit I, II, III, IV and V - 3. Those who have failed to acquire 75% attendance will have to attend the compensation evening classes which will be conducted in the 1st week of Nov in order to appear for the end semester examination #### ADDITIONAL COURSE INFORMATION The respective faculty will be available for consultation at times as per the intimation by the faculty. Location (OJAS-Chemistry) Coordinator C. Arival (CC-Chairperson) HOD at.