Department of Chemistry

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

Course Title	Nuclear Chemistry		
Course Code	CH635	No. of Credits	3 (Theory)
Department	Chemistry	Faculty	Dr. V. Rajeshkumar
Programme	M.Sc.(Chemistry)		
Course Coordinator(s) (if, applicable)	Dr. V. Rajeshkumar (Theory)		
E-mail	vrajesh@nitt.edu	Telephone No.	9087070774
Course Type	Elective course		

COURSE OVERVIEW

This course is offered to II year M.Sc.(Chemistry) students. This 3 credit course is for theory. Three theory classes will be conducted per week.

COURSE OBJECTIVE

To introduce the introduction of nuclear chemistry, discovery, types of nuclear reactions and its application M. Sc. students

COURSE OUTCOMES (CO)

Students would become familiar with the:

- √ Basics of nuclear chemistry
- ✓ Types of nuclear reactions and its application.

S.No.	Week	Topic	Mode of Delivery
1	II week of July	Unit 1: Discovery: Types of decay- decay kinetics: decay constant, half-life period, mean life parent daughter decay-growth relationships	
2	III week of July	Secular and transient equilibrium- units of radioactivity alpha, beta and gamma decay:	C&T, PPT
3	IV week of July	Theory of decay, energies and properties-artificial radioactivity-	C&T, PPT
4	I week of August	Detectors: Ionization chamber, electron pulse counters, scintillation detectors, semiconductor, detectors, thermo luminescence detectors and neutron detectors	C&T, PPT

5	II week of August	Unit 2: Types of nuclear Bethe notation, the Reaction cross — see elastic and inelastic	C&T, PPT	
6	III week of August	Spallation, fragmer fission, fusion, thermonuclear reac	C&T, PPT	
7	IV week of August	Unit 3: The fission energial classification of recoolant, phase of futhermal nuclear rea	C&T, PPT	
8	I week of September	The four factor for size of a thermal control - breeder r fuels -	C&T, PPT	
9	II week of September	Nuclear waste mand and passive safety, criticality safety, id enforcement agenci	C&T, PPT	
10	III week of September	Unit 4: Radiation of through matter -u absorption -radiatio	C&T, PPT	
11	IV week of September	Radiolysis of water chemical dosin dosimeter solution - in crystals	C&T, PPT	
12	I week of October	Effects of radiation inorganic gases, organic gases, organic solids, and polymanage.	C&T, PPT	
13	II week of October	Unit 5: Application isotopes, reactions radioisotopes	C&T, PPT	
14	III week of October	the Szilard-Chalmer's reaction -radiochemical principles in the use of tracers - applications of radioisotopes as tracers-		C&T, PPT
15	IV week of October	Chemical investigations, analytical applications, agricultural and industrial applications		C&T, PPT
16	I week of November	Neutron activation dating - use of nucle	C&T, PPT	
17	II week of November	Radioisotopes as s medicines.	C&T, PPT	
COURS	E ASSESSMENT METH	ODS		
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
Theory				

1	Assignment/Quiz	I week of Sep	One week	5
2	Test I	II week of Sep	60 minutes	20
3	Assignment/Quiz	III week of Oct	One week	5
4	Test II	IV week of Oct	60 minutes	20
5	Final Asessment	IV week of Nov	3 hours	50

Theory = Total (100)

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc.

- 1. W. Loveland, D. Morrissey, G. Seaborg. Modern Nuclear Chemistry, WileyInterscience, Hoboken, NJ, 2006.
- 2. Arnikar, H. J., Essentials of Nuclear Chemistry, 4thEdn., New Age International Publishers Ltd., New Delhi, 1995.
- 3. K. H. Lieser, Nuclear and Radiochemistry, 2nd revised ed., Wiley-VCH, Berlin, 2001.
- 4. G. Choppin, J. O Liljenzin and J. Rydberg. Radiochemistry and Nuclear Chemistry. 3 rd ed. Butterworth-- Heinemann, Oxford, 2002.
- 5. G Friedlander, GW Kennedy, ES Macias and JM Miller. Nuclear and Radiochemistry. 3 rd ed., John Wiley & Sons, New York, 1981.
- 6. S. Glasstone, Source Book on Atomic Energy, Krieger Pub Co, 3rd Edn, 1979.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1. Feedback from students during class committee meetings.
- Anonymous feedback through questionnaire at the end of the semester.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. 80% attendance is compulsory for appearing final assessment.
- 2. Plagiarism is strictly not allowed.
- 3. For those students who missed Test I and Test II due to genuine reasons, retest will be conducted during the III week of November 2017.
- 4. Extra classes will be conducted, if attendance is shortage for students.

ADDITIONAL COURSE INFORMATION

The faculty will be available for consultation at times as per the intimation by the faculty.

Ocycety Kumer 07/07/2017 CC-Chairperson

POTATSOCETAN HOD TOTAL (DR.L.CINDRELLA)