

DEPARTMENT OF CHEMICAL ENGINEERING

COURSE PLAN – PART I							
Name of the programme and specialization	MTech and Process Control and Instrumentation						
Course Title	Chemical Process Sys	stems					
Course Code	CL651B	No. of Credits	3				
Course Code of Pre- requisite subject(s)							
Session	July <u>2021</u>	July 2021 Section (if, applicable)					
Name of Faculty	Dr. K. Sankar	Dr. K. Sankar Department Chemical Engineering					
Official Email	shankark@nitt.edu	Telephone No.					
Name of Course Coordinator(s) (if, applicable)	Dr. P. Kalaichelvi	•	,				
Official E-mail	kalai@nitt.edu	Telephone No.	+91 - 431 - 2503109				
Course Type (please tick appropriately)	Programme Core cour	'se					

Syllabus (approved in BoS)

Course Content:

Historical overview of Chemical Engineering: Concepts of unit operations and unit processes, and more recent developments, The Chemical Industry-scope, features & characteristics. Flow sheets, and symbols for various operations.

Material balances in simple systems involving physical changes and chemical reactions; systems involving recycle, purge, and bypass, combustion reactions, Forms of energy, optimum utilization of energy, Energy balance calculations in simple systems. Introduction to Computer aided calculations-steady state material and energy balances, combustion reactions.

Basic Fluid Concepts: Dimensions and Units, Velocity and Stress Fields, Viscosity and surface tension, Non Newtonian viscosity, Dimensional Analysis (Buckingham PI theorem), Types of flows, Methods of Analysis, Fluid Statics. Pipe flow, Pumps, Agitation and Mixing, Compressors.

Review of conduction, resistance concept, extended surfaces, lumped capacitance; Introduction to Convection, natural and forced convection, correlations; Radiation; Heat exchangers- Fundamental principles and classification of heat exchangers, Evaporators

Fundamental principles and classification of Distillations, Adsorption, Absorption, Drying, Extraction, Membrane Process. Energy and Mass Conservation in process systems and industries. Introduction to chemical reactors.

REFERENCE BOOKS

- 1. G.T. Austin, R.N. Shreve, Chemical Process Industries, 5th ed., McGraw Hill, 1984.
- 2. W.L. McCabe, J.C. Smith and P. Harriott, *Unit Operations of Chemical Engineering*, Sixth Edition, McGraw Hill, 2001.
- 3. R. M. Felder and R.W. Rousseau, Elementary Principles of Chemical Processes, 3rd ed., John Wiley, New York, 2004.
- 4. L.B. Anderson and L.A. Wenzel, Introduction to Chemical Engineering, McGraw Hill, 1961.
- 5. H.S. Fogler, Elements of Chemical Reaction Engineering, 4th Ed., Prentice-Hall, 2006.

COURSE OBJECTIVES

This course is primarily to introduce various chemical processes and modeling to students from circuit branches.

MAPPING OF COs with POs

Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)
1. basic chemical process engineering	1-10, 12
2. fundamentals of fluid mechanics	1, 3, 5, 6, 8, 10, 12
3. the working of heat exchangers	1, 3, 5, 6, 8, 10, 12
4. the working of large scale industrial processes such as distillation columns and reactors.	1-10, 12

COURSE PLAN – PART II

COURSE OVERVIEW

Through this course, the students will be getting knowledged on basic chemical engineering systems, importance of flow sheets, and calculations involved in the operations. Students will also get aware of fluid mechanics fundamental, working of heat exchangers, distillation column and chemical reactors. Students learn the basics of modeling a simple processes in chemical engneering.

COURS	E TEACHING AND L	(Add more rows)	
S.No.	Week/Contact Hours	Topic	Mode of Delivery
1	Week 1	Historical overview of Chemical Engineering: Concepts of unit operations and unit processes, and more recent developments,	PPT, Online
2	Week 2	The Chemical Industry-scope, features & characteristics. Flow sheets, and symbols for various operations.	PPT, Online

3	Week 3	involving	balances in simple g physical changes Il reactions		PPT, Online	
4	Week 4	systems involving recycle, purge, and bypass, combustion reactions,			PPT, Online	
5	Week 5	Forms of energy, optimum utilization of energy, Energy balance calculations in simple systems.			PPT, Online	
6	Week 6	calculati	tion to Computer aid ons-steady state margy balances, comb s.	aterial	PPT, Online	
7	Week 7	and Unit	uid Concepts: Dime ts, Velocity and Stre y and surface tension an viscosity,	ess Fields,	PPT, Online	
8	Week 8	Dimensional Analysis (Buckingham PI theorem), Types of flows, Methods of Analysis, Fluid Statics. Pipe flow, Pumps, Agitation and Mixing, Compressors.			PPT, Online	
9	Week 9	Review of conduction, resistance concept, extended surfaces, lumped capacitance;			PPT, Online	
10	Week 10	Introduction to Convection, natural and forced convection, correlations; Radiation; Heat exchangers-Fundamental principles and classification of heat exchangers, Evaporators			PPT, Online	
11	Week 11	Fundamental principles and classification of Distillations, Adsorption, Absorption, Drying, Extraction, Membrane Process.			PPT, Online	
12	Week 12	Energy and Mass Conservation in process systems and industries. Introduction to chemical reactors.				
COURSE ASSESSMENT METHODS (shall range from 4 to 6)						
S.No.	Mode of Assessm	nent	Week/Date	Duration	% Weightage	
1	Assessment I		Week 5	1 hr	25%	
2	Assessment II (Assign	nment) Week 6			10%	

3	Assessment III	Week 11	1 hr	25%
4	Assessment IV (Assignment)	Week 12		10%
СРА	Compensation Assessment*	Week 12	1 hr	25%
5	Final Assessment *	Week 14	2 hrs	30%

^{*}mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Through online classroom by means of polling questions/messages

COURSE POLICY (including compensation assessment to be specified)

The course syllabus can be covered within 12 weeks. There are 5 assessments will be conducted to evaluate the student performance. Compensation assessment can be conducted before the final exam date.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- ➤ A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

~	The	above	policy	against	academic	dishonesty	shall	be	applicable	for	all	the
	prog	rammes	.									
ADDIT	ΓΙΟΝΑ	L INFO	RMATI	ON, IF A	NY							
FOR A	APPR(OVAL										
						0						
1					Kartik	مارم			_			
han	1				1200			0	hich	•		
1 ven	0	ر						(M	en cu-	-		
Cours	e Fac	ulty	CC- C	hairpers	on <u>Dr Kartik</u>	keya Shukla_	HOD					

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

	P.G.				
2018	2017	2016			
,	35% or (Class average/2) whichever is greater.		(Peak/3) or (Class Average/2) whichever is lower		

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.