

DEPARTMENT OF CHEMICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I						
Name of the programme and specialization	B.Tech and CHEMICAL ENGINEERING					
Course Title	HEAT TRANSFER					
Course Code	CLPC21	No. of Credits	L 3	T 0	P 0	C 3
Course Code of Pre-requisite subject(s)						
Session	July 2020 Section (if, applicable) NA					
Name of Faculty	Dr.P.KALAICHELVI Department CHEMICAL ENGINEERING					
Email	kalai@nitt.edu Telephone No. 04312503110					
Name of Course Coordinator(s) (if, applicable)	Dr. K.M.MEERA SHERIFFA BEGUM					
E-mail	meera@nitt.edu	Telephone No	04312	503109)	
Course Type	Core course					

Syllabus (approved in BoS)

Basic modes of heat transfer and the laws governing them. Steady state conduction through plane and composite walls general heat conduction equation, concepts of thermal diffusivity and equivalent thermal conductivity. Variable thermal conductivity, Radial Heat conduction through thick cylindrical and spherical vessels, concept of critical thickness, extended surfaces, Transient heat conduction

Convection – Dimensional analysis and empirical correlations, critical insulation thickness for cylindrical and spherical surfaces, Hydrodynamic and thermal Boundary layers, physical significance of the dimensionless groups. Boiling and condensation.

Heat Exchangers – classification and design, overall and individual film coefficients, mean temperature difference, LMTD correction factor for multiple pass exchanger, NTU and efficiency of Heat exchangers, use of efficiency charts.

Evaporation, single and multiple effect operation, material and Energy balance in evaporators, boiling point elevation, Duhring's rule, effect of liquid head, illustrative examples.

Thermal Radiation laws, spectrum of electromagnetic radiation, Black and Gray bodies, and configuration factor – typical examples. Radiation exchange between black surfaces with and without participating medium. Radiation exchange between non-black surfaces.

TEXT BOOKS

- 1. Binay K. Dutta, "Heat Transfer Principles and applications" Prentice Hall of India Pvt. Ltd.
- 2. D.Q. Kern," Process Heat Transfer," McGraw Hill Publishing.

REFERENCE BOOKS

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	1.	J.P.Holman,	<i>"Heat</i>	Transfer"	10 th	edition,	Mcgrawhill HED
--	----	-------------	--------------	-----------	------------------	----------	----------------

2. Yunus A. Cengel "Heat Transfer : A Practical Approach", 2nd edition, Mcgraw-Hill COURSE OBJECTIVES

- 1. To study the fundamental concepts of heat transfer viz., conduction, convection, radiation, boiling and condensation.
- 2. To use these fundamentals in typical engineering applications (Heat exchanger and Evaporator) and current research.

CC	DURSE OUTCOMES (CO)	
Co	ourse Outcomes	Aligned Programme Outcomes (PO)
1.	able to estimate steady state and transient heat transfer rates from/to object such as tanks, pipes, building etc	1,5,9,11,12
2.	able to develop equations for different types of convection and solve for heat transfer rate by convection.	1,5,8,9,10,11,12
3.	able to estimate the rate of radiation heat transfer with and without participating medium. Ability to identify the roll of re-radiating surface, radiation shields, boiling and condensation.	1,2,5,8,9,10,11.12
4.	able to carry out thermal analysis of heat exchanger using LMTD and effectiveness method.	1,2,3,5,8,9,10,11,12
5.	able to estimate steam economy, capacity of single and multiple effect evaporators.	1,2,3,5,8,9,10,11,12
6.	able to use the fundamentals learnt to understand the current research in heat transfer.	4,5,6,7,8,9,10,11,12

COURSE PLAN – PART II

COURSE OVERVIEW

The course will cover the three modes of heat transfer namely conduction, convection and radiation in detail. These modes will be explained through descriptions and problems. Thermal performances of Heat exchangers and Evaporators will also be dealt in detail.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Contact Hours	Торіс	Mode of Delivery
1.	Week 1	Introduction	Teams (Online)
2.	Week 1	basics of heat transfer modes	Teams (Online)
3.	Week 1	3D heat conduction equation derivation	Teams (Online)
4.	Week 2	Cylindrical system and Spherical system	Teams (Online)
5.	Week 2	Composite plane	Teams (Online)
6.	Week 2	Composite cylinders	Teams (Online)
7.	Week 3	Composite spheres	Teams (Online)
8.	Week 3	Critical insulation thickness	Teams (Online)
9.	Week 3	Heat generation in composite walls	Teams (Online)
10.	Week 4	Transient heat conduction	Teams (Online)
11.	Week 4	Convective heat transfer and its estimation methods	Teams (Online)
12.	Week 4	Hydrodynamic and thermal boundary layer	Teams (Online)
13.	Week 5	Exact solution method	Teams (Online)

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

14.	Week 5	Approximate solution n	nethod	Teams (Online)
15.	Week 5	Dimensional Analysis		Teams (Online)
16.	Week 6	Equations and Problems convection	s on free	Teams (Online)
17.	Week 6	Equations and Problems	s on forced	Teams (Online)
		Assessment I		Teams (Online)
18	Week 6	Heat exchanger types		Teams (Online)
19	Week 7	LMTD method		Teams (Online)
20.	Week 7	Effectiveness method		Teams (Online)
21.	Week 7	Problems on LMTD me	ethod	Teams (Online)
22.	Week 8	Problems on Effectiven	ess method	Teams (Online)
23.	Week 8	Evaporation		Teams (Online)
24.	Week 8	Material and energy b effect	alance for single	Teams (Online)
25.	Week 9	Multiple effect		Teams (Online)
26.	Week 9	Economy calculation		Teams (Online)
27.	Week 9	Problems on single effe	ct	Teams (Online)
28.	Week 10	Problems on multiple et	ffect	Teams (Online)
		Assessment II		Teams (Online)
		Assessment III - Starts	5	Teams (Online)
29.	Week 10	Radiation laws		Teams (Online)
30.	Week 10	Radiation exchange		Teams (Online)
31.	Week 11	Radiation from gases (non-participating)	participating and	Teams (Online)
32.	Week 11	Greenhouse effect and reradiating walls		Teams (Online)
33.	Week 11	Boiling	8	Teams (Online)
34.	Week 12	Condensation		Teams (Online)
35.	Week 12	Boiling		Teams (Online)
36.	Week 12	Discussion on overall course		Teams (Online)
		Compensation Assessment		Teams (Online)
		Final Assessment		Teams (Online)
COUR	SE ASSESSMENT MET	FHODS (shall range from	n 4 to 6)	
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Assessment I	End of 5 th week since commencement	1 hour	20%
2	Assessment II	End of 9 th week since commencement	1 hour	20%
3	Assessment III – (Assignment)	End of 7 th week On research topic related to heat transfer		20 %
4	Assessment IV (VIVA)	After Assessment II	Concepts and Application	10%
5	Compensation Assessment*	After 12 th week	1 hour	20%
6	Final Assessment*	At the end of Course	2 hours	30%
*mand	latory; refer to guidelin	es on page 5		

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Feedback is planned to be collected thrice; At class committee meetings during the assessment period and one at the end of course as soon as classes are over.
- 2. The academic performance of the students will be assessed based on **Two** assessments by written test (each 20 marks), Assignment (20 marks), Viva (10 marks) during the course and **One** final assessment (30 marks) at the end of course.

Suitable mapping of COs with POs will be made and attainment will be calculated.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Email : kalai@nitt.edu

COMPENSATION ASSESSMENT POLICY

One Compensation assessment will be conducted only for absentees in either the Assessments under Medical or Institute related activities.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)
At least 75% attendance in each course is mandatory.

- A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment ated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION	
The Course Coordinator is available for	consultation and Queries may also be emailed to the
Course Coordinator directly at kalai@	nitt.edu
FOR APPROVAL	M. Ad-
Aluch	
Course Faculty: Dr.P.Kalaichelvi	CC-Chairperson: DrM.Perumalsamy
Kroky	
HOD: Dr.K.M.Meera S. Begum	(Approved by CC Chairman and HOD)

Guidelines:

- a. The number of assessments for a course shall range from 4 to 6.
- b. Every course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c. One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d. The passing minimum shall be as per the regulations.

B.Tech. Admitted in				
2018	2017	2016	2015	
35% or class averag greater.	e/2 whichever is	Peak/3 or class ave lower	rage/2 whichever is	40%

- e. Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f. Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g. Necessary care shall be taken to ensure that the course plan is reasonable and is objective.