

DEPARTMENT OF CHEMISTRY

COURSE PLAN – PART I				
Name of the programme and specialization	B. Tech. (Chemical Engineering)			
Course Title	Chemistry (Theory)			
Course Code	CHIR11	No. of Credits	3	
Course Code of Pre- requisite subject(s)	Nil			
Session	July 2019	Section (if, applicable)	Nil	
Name of Faculty	Dr. <i>rer. nat.</i> Somenath Garai	Department	Chemistry	
Official Email	sgarai@nitt.edu	Telephone No.	+91-8247085726 (M)	
Name of Course Coordinator(s) (if, applicable)	Dr. <i>rer. nat.</i> Somenath Garai			
Official E-mail	sgarai@nitt.edu	Telephone No.	+91-8247085726 (M)	
Course Type (please tick appropriately)	Core course	Elective co	urse	

Syllabus (approved in BoS)

Theory (Units):

Unit 1: Electrochemistry and Corrosion

Cell EMF-its measurement and applications -concentration cell -electrode electrolyte concentration cell -concentration cell with and without transference -Dry corrosion and wet corrosion, mechanisms, types of corrosion, Differential metal corrosion, differential aeration corrosion, intergranular, Passivity, Pitting, Polarization -Chemical conversion coatings and organic coatings-Paints, enamels.

Unit 2: Phase rule

Definition of terms –phase-components-degree of freedom-derivation of Gibbs phase rule –one component system – H_2O , CO_2 , Sulfur –Two-component system –Eutectic systems –reduced phase rule -Pb-Ag system –Compound Formation with congruent melting –Zn-Mg Alloy system-Copper-nickel alloy system -systems with incongruent melting – Na_2SO_4 -H2O system and simple three-component systems.

Unit 3: Water

Sources, Hard & soft water, Estimation of hardness by EDTA method, Scale & Sludge-Caustic embrittlement -softening of water, zeolite process & demineralization by ion exchangers, boiler

feed water, internal treatment methods-specifications for drinking water, BIS & WHO standards, treatment of water for domestic use, desalination -Reverse osmosis & Electrodialysis.

Unit 4: Spectroscopy

Interaction of electromagnetic radiation with matter, Electronic spectroscopy -Theory of electronic transitions, instrumentation, Beers Lambert law, Woodward FIESERrule, applications. IR spectroscopy -Fundamentals, Instrumentation, and applications, Raman spectroscopy -Fundamentals and applications.

Unit 5: Polymers and Composites

Concept of macromolecules-Tacticity-Classification of Polymers-Types of Polymerization-Mechanism--Ziegler Natta Polymerization -Effect of Polymer structure on properties - Important addition and condensation polymers –synthesis and properties –Molecular mass determination of polymers-Static and dynamic methods, Light scattering- Rubbers – Vulcanization –Synthetic rubbers –Conducting polymers-Composite materials

Reference and Text Books

- 1. P. C. Jain & M. Jain, *Engineering Chemistry*, Dhanpat Rai Publishing Company, New Delhi, 2005.
- 2. P. W. Atkins and J. de Paula, *Physical chemistry*, Oxford University Press, 2002.
- 3. B.R. Puri, L. R. Sharma, M.S. Pathania, *Principles of Physical Chemistry*, Vishal Publishing Company, 2008.
- 4. F.W. Billmayer, Textbook of Polymer Science, 3rd Edison, Wiley. N.Y. 1991.
- 5. S.S. Darer, S. S. Umare, A Text Book of Engineering Chemistry, S. Chand Publishing, 2011.

COURSE OBJECTIVES

To introduce the student's basic principles of Electrochemistry and Corrosion. They will be familiar with phase rule & its applications. Students will know about the essential requirements of water and its importance in day-to-day life. To provide students with a brief outline of the types and applications of polymers. Finally, students will be equipped with the usage of spectroscopy in industrial applications.

Course Outcomes Course Outcomes Students will learn about the: 1. Fundamentals of Electrochemistry and Corrosion 2. Importance of Phase rule 3. Applications of Water Chemistry

4.	Basic concepts of Spectroscopy	
5.	Theory and applications of Polymers and Composites.	

COURSE PLAN – PART II

COURSE OVERVIEW

This is a three credit course offered to I year B.Tech. Chemical Engineering Students. This course is a theory (3 credit) course. Three theory classes (3 h per week) will be conducted per week. This course provides a thorough understanding of the subject through lectures, tutorials and demonstrations.

COUR	COURSE TEACHING AND LEARNING ACTIVITIES (Add more rows)						
S.No.	Week/Contact Hours	Topic	Mode of Delivery				
1	III week of August	Unit 1: Cell EMF-its measurement and applications -concentration cell - electrode electrolyte concentration cell -concentration cell with and without transference	C&T, PPT				
2	IV week of August	Dry corrosion and wet corrosion, mechanisms, types of corrosion, Differential metal corrosion, differential aeration corrosion, intergranular, Passivity, Pitting, Polarization -Chemical conversion coatings and organic coatings-Paints, enamels.	C&T, PPT				
3	I week of September	Unit 2: Definition of terms –phase-components-degree of freedom-derivation of Gibbs phase rule –one component system –H ₂ O, CO ₂ , Sulfur –Two-component system	С&Т, РРТ				
4	II week of September	Reduced phase rule -Pb-Ag system – Compound Formation with congruent melting –Zn-Mg Alloy system- Copper-nickel alloy system	C&T, PPT				
5	III week of September	Systems with incongruent melting – Na ₂ SO ₄ -H2O system and simple three-component systems.	C&T, PPT				
6	IV week of September	Unit 3: Sources, Hard & soft water, Estimation of hardness by EDTA method, Scale & Sludge.	C&T, PPT				

		Caustic	embrittlement -so	ftening of		C&T, PPT
		water,	zeolite proc	ess &		C&1,111
7	I week of October		alization by ion exc			
			eed water, internal	treatment		
		methods		votor DIC		C&T, PPT
	II week of October		ations for drinking volumes standards, treatment			C&I, PPI
8	II WEEK OF OCTOBER		mestic use, desal			
			osmosis & Electrod			
			Interaction of electr			C&T, PPT
9	III week of October		n with matter,			
			copy -Theory of			
		transitio	ns, instrumentation	n.		C&T, PPT
10	IV week of October	Beers	Lambert law, V	Woodward		C&1, FF1
10	TV Week of Second		rule, applications.			
		ID		1 . 1		COT DDT
			pectroscopy -Fundentation and ap	damentals, plications,		C&T, PPT
11	IV week of March		spectroscopy –Fun	-		
	TV Week of Ividion		lications.			
			Concept of macror	nolecules-		C&T, PPT
			y -Classification			
12	I week of November		rs-Types of Polyn			
			ismZiegler	Natta		
		Polymer				C 0 T PPT
	II wook of November		of Polymer stru			C&T, PPT
13 II week of November properties				mass		
	determination of polymers					
	Static and dynamic methods, Light					C&T, PPT
	III week of		ngImportant addi	_		
14	37 1					
and properties				-		
		D 11	T7 1	G 41 33		COT DDT
	IV week of		-Vulcanization	•		C&T, PPT
15	November	rubbers	· ·	polymers-		
	11010111001	Compos	site materials			
COURS	COURSE ASSESSMENT METHODS (shall range from 4 to 6)					
S.No.	. Mode of Assessment		Week/Date	Duratio	n	% Weightage
Theory	<i>I</i>		1	L		1
1	1 Test-I		I week of	60 minut	.00	20
I	1 621-1		October	oo miinut	.00	20

2	Quiz/seminar/G.D./ assignment	III week of October	One week	10
3	Test-2	I week of November	60 minutes	20
СРА	Compensation Assessment*	26.11.2019- 29.11.2019	60 minutes	20
4	Final Assessment *	II week of December	3 hours	50

Total (100 Marks)

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Feedback from students during class committee meetings
- 2. Anonymous feedback through questionnaire at the end of the semester.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

E-mail: <u>sgarai@nitt.edu /</u> Phone: +91-8247085726

COMPENSATION ASSESSMENT POLICY

For those students who missed Test I and Test II due to genuine reasons, Compensation assessment will be conducted during 26.11.2019 - 29.11.2019.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- ➤ At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award

the punishment if the student is found guilty. The report shall be submitted to the Academic office.

> The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

The respective faculty will be available for consultation at times as per the intimation by the faculty.

FOR APPROVAL

Course Faculty 5.600 CC- Chairperson

HOD

Page 6 of 7

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2019	2018	2017	2016	
35% or (Class average/2) whichever is greater.		(Peak/3) Average/2) lower	or (Class whichever is	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.