

DEPARTMENT OF Chemical Engineering

COURSE PLAN – PART I					
Name of the programme and specialization	M.Tech Chemical				
Course Title	Fuel Cell Technology				
Course Code	CI 619	No. of Credits	3		
Course Code of Pre- requisite subject(s)	None				
Session	January 2019	Section (if, applicable)	Not applicable		
Name of Faculty	G.Arthanareeswaran	Department	Chemical Engineering		
Official Email	arthanareeg@nitt.edu	Telephone No.	3118		
Name of Course Coordinator(s) (if, applicable)	Not applicable				
Official E-mail		Telephone No.			
Course Type (please	Core course	Elective cou	rse		
tick appropriately)					
Syllabus (approved in	1				
• • •	cations, heat of reactions				
••	es, Efficiency, power, he	at due to entropy cha	ange and internal ohmic		
heating.					
Nernst equation and op	pen circuit potential, pres	sure and temperatur	re effect -Stoichiometric		
coefficients and reactain	nts utilization - Mass flo	w rate calculation -	voltage and current in		
parallel and serial conne	ection-Over potentials and	dpolarizations - Activa	ation polarization - Tafel		
equation and exchang	e current density –Ionio	c conductivity, catal	vsts, Temperature and		
	ectro-osmotic Drag effect.	, , , , , , , , , , , , , , , , , , ,			
	ents: Anode and Cathode	materials catalysts n	nembrane. Fuels for fuel		
•		•			
cells- PEM Fuel cell stacks - Rate of mass transfer of reactants and products - water					
management – current collections and gas removal- Bipolar plates- flow distribution – Heat and water removal from the stack.					
Fuel cell systems analyze: Energy systems, power- Train or Drive-Train Analysis – PEMFC					
powered Bus- Flow Sheet and conceptual Design-Detailed Engineering Designs					
COURSE OBJECTIVES					
To understand about fuel cells, their working principle, Types, Design and performance analysis					
MAPPING OF COs with POs					
	Programme				
Course Outcomes		Outcomes (PO)			
			(Enter Numbers only)		
1. Know the basics and working principles of the Fuel cell PO1					
technology.					

the	ect the suitable material fuel cells. derstand the pressure d	PO1 PO2 PO3 PO4 PO5 PO7 PO8 PO11 PO1 PO2 PO4					
	as well as stack.	PO5 PO6 PO7 PO8 PO11					
4. Des	sign and stack making p	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO10 PO11					
COURSE PLAN – PART II							
Fuel ce Stoichi		es an insight into concepts of electroche cells. The Types and working principle is also taught					
COUR	SE TEACHING AND LE	ARNING ACTIVITIES	(Add more rows)				
S.No.	Week/Contact Hours	Торіс	Mode of Delivery				
1.	Week 1	Introduction to Fuel Cell technology – Overview	Chalk and talk				
2.	Week 1	Basic electrochemistry for all the fuel Basic principles, classifications of Electocemical reactions	РРТ				
3.	Week 1	Heat of reactions, enthalpy of formation of substances	РРТ				
4.	Week 2	Efficiency, power generation	РРТ				
5.	Week 2	Heat due to entropy change and internal ohmic heating.	РРТ				
6.	Week 2	Fuel Cells Thermodynamics	РРТ				
7.	Week 3	Electrode potential and Electrochemical Potential	Chalk and Board				
8.	Week 3	Nernst equation and open circuit potential, pressure and temperature effect	PPT				

9.	Week 3	Stoichiometric coefficients and reactants utilization	РРТ
10.	Week 4	Activation over-potential	PPT
11.	Week 4	Mass flow rate calculation -	РРТ
12.	Week 4	Voltage and current in parallel and serial connection	РРТ
13.	Week 5	Over potentials andpolarizations	PPT
14.	Week 5	Concentration Polarization	PPT
15.	Week 5	Transport of Electricity: Ohmic Polarization	РРТ
		Assessment I	
16.	Week 6	Graphical representation of the factors that contributes to fuel cell performance	Chalk and Board
17.	Week 6	Activation polarization	PPT
18.	Week 6	Tafel equation and exchange current density	PPT
19.	Week 7	Ionic conductivity, catalysts	PPT
20.	Week 7	Temperature and humidification effect	Chalk and talk
			Dama 2 of (

21.	Week 7	electro-osmotic Drag effect.	PPT
22.	Week 8	Fuel Cell Components	PPT
23.	Week 8	Basics of Ionic Transport in PEM	Chalk and Board
24.	Week 8	Anode and Cathode materials, catalysts,	Chalk and Board
25.	Week 9	membrane, Fuels for fuel cells	Chalk and Board
26.	Week 9	Fluorinated polymer based PEM	Chalk and Board
27.	Week 9	Acid-base blends type PEM, Hydrocarbon polymer based PEM	Chalk and Board
28.	Week 10	Electrolyte : Proton conductivity; cross-over. Bipolar plate : Mechanical and chemical strength; flow field design;	РРТ
29.	Week 10	Catalyst : Surface area; selectivity Gas diffusion layer : Porosity; hydropholicity; hydrophilicity; strength	Chalk and Board
30.	Week 10	Rate of mass transfer of reactants and products - water management, electrical conductivity	PPT
		Assessment II	
31.	Week 11	Heat and water removal from the stack.	Chalk and Board
32.	Week 11	Fuel cell systems analyze: Energy systems,	Chalk and Board

33.	Week 11	power- Train or Drive-Train Analysis		PPT		
34.	Week 12	Application of Fuel cell powered Bus		Chalk and Board		
35.	Week 12	Flow Sheet and conceptual Design Detailed Engineering Designs		PPT		
36.	Week 12	Hydrogen Generation, Hydrogen Storage				PPT
COURS	SE ASSESSMENT MET	HODS (s	hall range from 4 to	6)		
S.No.	Mode of Assessm	nent	Week/Date	Durati	on	% Weightage
1	Assesssment I		End of 5 th week since commencement	1 hou	r	20%
2	Assessment II		End of 10 ^h week since commencement	1 hou	r	20%
3	Assessment III – (Seminar)		In between the course as mentioned in the course plan	30 minute the cla		20 % (Average)
СРА	Compensation Assessment*		After 12 th week	1 hou	r	20%
5	Final Assessment*		At the end of Course	3 hou	ſS	40%
*mandatory; refer to guidelines on page 4						
COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)						
REFERENCE BOOKS						
1. James Larminie and Andrew Dicks, Fuel Cell Systems Explained, 2nd Edition, John						
Wiley & Sons Inc., 2000.						

- 2. FranoBarbir, PEM Fuel Cells Theory and Practice, Elsevier Academic Press, 2005.
- 3. GregorHoogers, Fuel Cell Technology, Handbook, SAE International, 2003.
- B Viswanathan and M AuliceScibioh, Fuel Cell Principles and Applications, University Press, 2006.

COURSE POLICY (including compensation assessment to be specified)

1) Feed back is planned to be collected thrice; At class committee meetings during the assessment period and one at the end of course as soon as classes are over.

2) The academic performance of the students will be assessed based on Two assessments by written test (each 20 marks), Assignment test (20 marks) during the course and One final assessment (50 marks) at the end of course.

Suitable mapping of COs with POs will be made and attainment will be calculated. <u>ATTENDANCE POLICY</u> (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, , academic honesty and plagiarism etc.)

- 1) It is expected that the students will not indulge in any form of malpractice in Examinations. Students must attend all the assignment tests, and the average will be taken for its weightage.
- 2) **One Compensation assessment** will be conducted only for absentees in either the Assessments or Assignment tests under Medical or Institute related activities.
- 3) Attendance of **70% is mandatory**. Students with **attendance below 50%** will be **prevented** to attend the final assessment examination.
- 4) Students with attendance between 50 70% under genuine medical reasons will be allowed to attend the compensation classes to meet out attendance criteria.

MODE OF CORRESPONDENCE (email/ phone etc) arthanareeg@gmail.com, 9940361673 ADDITIONAL INFORMATION eg.: The Course Coordinator is available for consultation and Queries may also be emailed to the Course Coordinator directly at arthanareeg@gmail.com 5) It is expected that the students will not indulge in any form of malpractice in FOR APPROVAL hun **Course Faculty** CC- Chairperson HOD Do.G. Action and aron ,

<u>Guidelines</u>

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2018	2017	2016	2015	
35% or (Class average/2) whichever is greater.		(Peak/3) or (Cl whichever is low	- · · ·	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.