DEPARTMENT OF CHEMICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLAN	- PART I			
Course Title	MOMENTUM TRANSFER				
Course Code	CLPC14	No. of Credits	3		
Course Code of Pre- requisite subject(s)	NIL THE THE BOX 20				
Session	July 2018	Section (if, applicable)	MOOTIO BENUO:		
Name of Faculty	Dr.M.Perumalsamy	Department	Chemical Engineering		
Email	mpsamy@nitt.edu	amy@nitt.edu Telephone No.			
Course Type	√ Core course	Elective c	ourse		
Course Type	Core course	Elective c	ourse		

Syllabus (approved in BoS)

Properties of fluids and concept of pressure: Introduction - Nature of fluids - physical properties of fluids - types of fluids. Fluid statics: Pressure - density - height relationships. Pressure Measurement. Units and Dimensions - Dimensional analysis. Similarity - forces arising out of physical similarity - dimensionless numbers.

Momentum Balance and their Applications: Kinematics of fluid flow: Stream line -stream tube - velocity potential. Newtonian and non-Newtonian fluids - Time dependent fluids - Reynolds number - experiment and significance - Momentum balance - Forces acting on stream tubes - Potential flow - Bernoulli's equation - Correction for fluid friction - Correction for pump work.

Flow of Incompressible Fluids Through Ducts: Flow of incompressible fluids in pipes - laminar and turbulent flow through closed conduits - velocity profile & friction factor for smooth and rough pipes - Head loss due to friction in pipes, fitting etc. Introduction to compressible flow. Isentropic flow through convergent and divergent nozzles and sonic velocity.

Flow of Fluids through Solids: Form drag - skin drag - Drag co-efficient. Flow around solids and packed beds. Friction factor for packed beds. Ergun's Equation - Motion of particles through fluids - Motion under gravitational and centrifugal fields - Terminal settling velocity. Fluidisation - Mechanism, types, general properties - applications.

Transportation and Metering: Measurement of fluid flow: Orifice meter, venturi meter, pitot tube, rotameter, weirs and notches Wet gas meter and dry gas meter. Hot wire and hot film anemometers. Transportation of fluids: Fluid moving machinery performance. Selection and specification. Air lift and diaphragm pump. Positive displacement pumps: Rotary and Reciprocating pumps. Centrifugal pumps and characteristics.

COURSE OBJECTIVES

- 1. To impart the fundamental concepts of fluid statics, pressure distribution and dimensional analysis
- 2. To nurture the students to solve fluid dynamics problems using Newton's laws of motion.
- 3. To enable students to compute velocity profile ,friction factor and head loss in pipes and fittings
- To impart the knowledge of metering and transportation of fluids and fluid moving machinery performance

COURSE OUTCOMES (CO)				
Course Outcomes	Aligned Programme Outcomes (PO)			
The students would have				
the Knowledge of fundamental concepts in fluids statics and to use dimensional analysis for scaling experimental results	1, 2,	3, 5, 8, 11, 12		
the ability to solve hydrostatic and fluid flow problems using Newton's laws of motion.	1, 2,	3, 5, 8, 9, 11, 12		
the ability to analyse frictional flow in pipes and piping networks and to compute the head loss and power requirements for chemical process equipment	1, 2,	3, 5, 6, 8, 11, 12		
the ability to select the metering equipment and fluid moving machinery for an appropriate chemical engineering operations	1, 2,	3, 5, 6, 8, 10, 11, 1		

COURSE PLAN - PART II

COURSE OVERVIEW

The Momentum Transfer course is offered for chemical engineering students in the third semester to acquire the knowledge of basic fluid dynamics and its applications in chemical engineering. The course content includes nature of fluid behavior and its properties, measurement of pressure and its relationship with elevation and density of the fluid. Static and dynamic behaviour of fluids and forces acting upon are studied through macroscopic and microscopic analysis and to use differential equations to understand pressure and velocity variations. Turbulence behaviour, concept of boundary layer, friction factor, pipe flow, pressure loss in fittings, flow past an immersed body, flow through packed & fluidized beds are also studied in detail. Measurement of fluid flow and Fluid moving machinery performance. Selection and specification will be discussed

6.No. Week/Contact Hours 1. Week 1		Topic	Mode of Delivery Chalk & Talk, PPT	
		Introduction to fluid mechanics and Nature of fluids, Physical properties of fluids		
2.	Week 2	Newtonian and Non- Newtonian fluids, Pressure - density - height relationships, Pressure Measurement	Chalk & Talk	
3.	Week 3	Units and Dimensions - Dimensional Analysis, Similarity - forces arising out of physical similarity	Chalk & Talk Tutorial	
4.	Week 4	Kinematics of fluid flow: Stream line - stream tube - velocity potential. Reynolds experiment and significant	Chalk & Talk, PPT	
5.	Week 5	Momentum balance - Forces acting on stream tubes - Potential flow - Bernoulli's equation	Chalk & Talk	
6.	Week 6	Correction for fluid friction - Correction for pump work.	Chalk & Talk Tutorial	
7.	Week 7	Flow of incompressible fluids in pipes - laminar and turbulent flow through closed conduits	Chalk & Talk	
8.	Week 8	velocity profile & friction factor for smooth and rough pipes -	Chalk & Talk	
9.	Week 9	Head loss due to friction in pipes, fitting etc.	Chalk & Talk Tutorial	
10.	Week 10	Introduction to compressible flow. Isentropic flow through convergent and divergent nozzles	Chalk & Talk, PPT	
11.	Week 11	Flow of Fluids through Solids: Form drag - skin drag - Drag co-efficient Flow around solids and packed beds.	PPT	
12.	Week 12	Friction factor for packed beds. Ergun's Equation	Chalk & Talk, PPT	
13.	Week 13	Motion of particles through fluids - Motion under gravitational and centrifugal fields-Terminal settling velocity.	PPT, Tutorial	

14.	Week 14	Fluidisation - Mechanism, types, general properties - applications	PPT
15.	Week 15	Measurement of fluid flow: Orifice meter, venturi meter, pitot tube, rotameter, Hot wire and hot film anemometers.	Chalk & Talk, PPT, Tutorial
16.	Week 16	Transportation of fluids: Fluid moving machinery performance. Selection and specification.	Chalk & Talk, PPT
17.	Week 17	Air lift and diaphragm pump. Positive displacement pumps: Rotary and Reciprocating pumps. Centrifugal pumps and characteristics.	PPT

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle test I	On completion of first two Units	1Hr	20%
2	Cycle Test II	On completion of 3 rd and 4 th units	1 Hr	20%
3	Assignment (2 Nos)	One after I Cycle test and another after II Cycle test		Each 5 %
CPA	Compensation Assessment*	After II Cycle test	1Hr a yeary	20%
4	Semester exam*	After completing the syllabus	3 Hrs	50 %

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- Assessing students' performance in the assessment methods
- Questionnaire about the effectiveness of the delivery method, topics and the knowledge gained

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, , academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone etc)

Most of the information will be announced in the class room itself.

Any other correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through class representative via

Mail/Phone.

Queries (if required) to the course teacher shall be emailed to mpsamy@nitt.edu

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

COMPENSATION ASSESSMENT

ADDITIONAL INFORMATION

- 1. Attending all the assessments are MANDATORY for every student.
- 2. If any student is not able to attend any of the assessments (1, 2 only) due to genuine reason, student is permitted to attend the compensation assessment (CPA).
- 3. At any case, CPA will not be considered as an improvement test.

ACADEMIC DISHONESTY & PLAGIARISM

- ➤ Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

The teachers can be contacted in person for clarifications by the student on a mutually convenient FOR APPROVAL

Course Faculty CC-Chairperson HOD

Guidelines:

- a) The number of assessments for a course shall range from 4 to 6.
- b) Every course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. This is not applicable for project work/industrial lectures/internship.
- d) The policy for attendance for the course should be clearly specified.
- e) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.