NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI-620015 DEPARTMENET OF CHEMICAL ENGINEERING

	COURSE	OUTLINE				
Course Title	CHEMICAL REACTOR ANALYSIS AND DESIGN					
Course Code	CL 605	No. of Credits	L T P C 2 1 0 3			
Department	Chemical Engineering	Faculty	Dr.P.Sivashanmugam			
Course Prerequisite	Knowledge in homogenous chemical reaction engineering, Fluid Mechanics, Heat transfer, and Mass transfer					
Course Coordinator(s) (if, applicable)	Dr.P.Sivashanmugam					
Other Course Teacher(s)/Tutor(s) E-mail	-	Telephone No.	0431-2503106			
Course Type	Core course					

COURSE OVERVIEW

This course will give an idea in understanding the kinetics and design of catalytic and non-catalytic

COURSE OBJECTIVES

- To understand the kinetics of non-catalytic chemical reaction and reactor design.
 To understand the catalyst physical characterisation of surface area, pore volume, and pore
- 3. To understand the kinetics of catalytic chemical reaction and reactor design.
- 4. To understand the kinetics of fluid -fluid Chemical reaction and reactor design.
 5. To understand the operation and troubleshooting of heterogeneous reactors.

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)
1. COURSE OUTCOME Upon completing the course, the student will be able to have awareness on catalyst physical properties and catalyst characterization	PO1, PO2, PO3
acquire awareness on kinetics of catalytic reaction and reactor design.	PO1, PO2, PO4, PO6, PO8, PO9 and PO10
familiarize kinetics of non-catalytic reaction and reactor design familiarize with operation and troubleshooting of	PO1, PO2,PO3, PO4, PO5, PO6, PO7, PO9, PO10 and PO11
heterogeneous reactors.	PO1, PO2,PO3, PO4, PO5, PO6, PO7, PO9, PO10 and PO11

COURSE TEACHING AND LEARNING ACTIVITIES (*: It is likely that some of the classes will be lost due to holidays and hence the semester will go upto 14 weeks)

S.No.	Week	Topic	Mode of Delivery	
1	Week 1	Overview of chemical reactor analysis and design Introduction non-catalytic reaction non-catalytic reaction and kinetics	Chalk and talk	
2	Week 2	Kinetics expression developments of non- catalytic reaction Tutorial Problem solving and discussion Design of reactor for non-catalytic reaction	Chalk and talk	
3	Week 3	Design of reactor for non-catalytic reaction Tutorial Problem solving and discussion Catalytic reaction Introduction	Chalk and talk	
4	Week 4	Basics of physical and chemical adsorption Catalytic reaction mechanism Adsorption theory	Chalk and talk	
5	Week 5	Tutorial Problem solving Surface area determination Pore volume and pore size determination	Chalk and talk	
6	Week 6	Tutorial Problem solving and discussion Catalytic reaction mechanism Tutorial Problem solving and discussion	Chalk and talk	
7	Week 7	Catalytic poison Cycle test -I Kinetics expression developments for Catalytic poison Tutorial Problem solving	Chalk and talk	
3	Week 8	External transport process (resistance) External transport process (resistance) for different reactors Tutorial Problem solving and discussion	Chalk and talk	
	Week 9	Internal transport process-diffusions Internal transport process- Internal transport process and effective thermal conductivity Effectiveness factor and Thiele modulus	Chalk and talk	

10	Week 10	Tut	ectiveness factor a orial Problem solu- n-isothermal effect	ving and discus	sion	Chalk and talk	
11	Week 11	Des	sign of rector for o sign of rector for o orial Problem sol	catalytic reactio	n	Chalk and talk	
		Сус	cle test -II				
12	Week 12	Flui dev Flui	id-Fluid reactions id-Fluid Reacti elopments id-Fluid reactio elopments	ons Kinetic	expression expression	Chalk and talk	
13	Week 13	Des	orial Problem solving of reactor for d-Fluid reactions	ving and discus Fluid-Fluid rea	sion ctions	Chalk and talk	
14	Week 14	Sem	orial Problem solv ninar part talk and rview of ideas le	discussion		Chalk and talk	
			ester Examination	n			
S.No.	SE ASSESSME Mode of	NT M	IETHODS Week/Date				
0.140.	Assessment		week/Date	Duration	%	Weightage	
1	I cycle test		5 th week since commencement	1 hour		20%	
2	II cycle test		10 th week since commencement	1 hour		20%	
3	Retest (Only for Absentees)		10 th week since commencement	1 hour		20%	
4	Seminar		12 th seek			10 %	
5	End semester examination		16 th week since commencement	1 hour		50%	
	examination		since commencement		ebsite addres		

- 1. O. Levenspiel, Chemical Reaction Engineering, 3rdEdn., Wiley Eastern, New York, 1999.
- 2. J.M. Smith, Chemical Kinetics, 3rdEdn., McGraw Hill, New York, 1981.
- H. Scott Fogler, Elements of Chemical Reaction Engineering, 4th Edn., Prentice Hall of India Ltd., 2008.
- J.J. Carberry, Chemical and Catalytic Reaction Engineering, McGraw Hill, New York, 1976.
- 5. R. Aris, Elementary Chemical Reactor Analysis, PHI, 1969.
- G.F. Froment, K.B. Bischoff, Chemical Reactor Analysis and Design, 2nd ed., John Wiley, New York, 1990.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Feed back is planned to be collected twice; once in the mid semester and one at the end of course as soon as classes are over.
- 2) The academic performance of the students will be assessed based on 2 cycle tests (each 20 marks), one final examination (50 marks) and seminars (10 marks).
- 3) Suitable mapping of Cos with Pos will be made and attainment will be calculated.
- 4) Reassessment after the declaration of endsem result will be conducted for those candidates who failed in the course or those who were absent in endsem assessment test on medical ground

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1) It is expected that the students will not indulge in any form of malpractice in Examinations. Seminar presentation will focus on the emerging trends.
- 2) Attendance of 75% and above is expected. The 25% allowance is given for absence due to illness/institute related activities (sports/competitions/seminars etc)

Additional Course policy

- Student who have missed the first or second or both the cycle test(s) can register with
 the concerned faculty for the RE-TEST Exam which shall be conducted soon after the
 second cycle test, but before the End semester examination. The weightage for Retest is
 20% and time duration is 1 hour. The portions for Retest includes both the cycle test(s)
 portions.
- Mandatory classes (after the semester examinations of the current session) should be attended by the students, whose attendance falls below 75% and but above 50% in this subjected concerned.
- 3. Students who have less than 50% of attendance have to redo the subject.
- 4. Students who have failed in the semester examination with F Grade, those completed

mandatory classes and those have missed the end semester examination shall take reassessment (supplementary examination).

5. The passing minimum should be 35.

ADDITIONAL COURSE INFORMATION

eg.: The Course Coordinator is available for consultation at times that are displayed on the coordinator's office notice board. Queries may also be emailed to the Course Coordinator directly at psiva@nitt.edu

OR SENATE'S CONSIDERAT	ION		
Dr. P. Siva Shanmigum Course Faculty	CC-Chairperson	28	humana 9/8/2017 HOD