CLPC11- Chemistry III | | COURSE PLAN | | | | |------------------------------|--------------------------|-------------------|----------------|--| | Course Title | Chemistry III | Chemistry III | | | | Course Code | CLPC11 | No. of
Credits | 3 | | | Department | Chemistry | Faculty | Dr. M. Sathiya | | | Pre-requisites Course Code | | NA | | | | Course Coordinator(s) (if, a | applicable) Dr. M. Sathy | | | | | E-mail | shakthikrish@gmail.com | Phone: | +919940060659 | | | Course Type | PC | | | | ### COURSE OVERVIEW This course is for II year B. Tech. Chemical Engineering students. This 3 Credit course is based on theory classes. #### COURSE OBJECTIVE - To learn the principles of photochemical reactions and catalyzed reactions in order to apply them in organic synthesis. - To acquire knowledge on the advanced characterization techniques in identification of compounds. - To understand the principles of reaction kinetics, phase equilibrium and solution chemistry. - > To gain insight into fundamentals and applications of electrochemical systems. ## COURSE OUTCOMES(CO) At the end of the course, student will be able to - Apply the concepts of photochemistry and catalysts in optimizing the conditions of organic synthesis. - Use advanced spectroscopic tools in characterization of the reaction products to assess purity and yield. - Determine the best reaction conditions to maximize the products by applying the principles of homogeneous and heterogeneous catalysis. - Adopt phase equilibrium principles to achieve fractional distillation, steam distillation and solvent extraction. - Become familiar with the properties of electrolytes and electrodes and their use in electroanalytical techniques and electrochemical power sources. ## COURSE TEACHING AND LEARNING ACTIVITIES | SI. No. | week | Topic | Mode of
Delivery | |---------|-------------------|--|---------------------| | 1 | I-week Aug/2017 | Fundamentals of Photochemistry and various photochemical reactions. | C&T, PPT | | 2 | II-week Aug/2017 | Catalytic reactions in organic synthesis | C&T, PPT | | 3 | III-week Aug/2017 | Electrochemistry - DHO theory, Oswalt's dilution law - Applications. | C&T, PPT | | 4 | IV-week Aug/2017 | Buffer solutions, Hydrolysis of salts and electro-analytical techniques. | C&T, PPT | | 5 | I-week Sep/2017 | Electrochemical Power sources | C&T, PPT | |----|-------------------|--|----------| | 6 | II-week Sep/2017 | Chemical Kinetics – Rate and order simple reactions. Reaction rate theories. | C&T, PPT | | 7 | III-week Sep/2017 | Complex reactions | C&T, PPT | | 8 | IV-week Sep/2017 | Homogenous and heterogeneous Catalysis and Surface reactions | C&T, PPT | | 9 | I-week Oct/2017 | Enzyme Catalysis, Self-assembled monolayers, LB films. | C&T, PPT | | 10 | II-week Oct/2017 | Adsorption isotherms | C&T, PPT | | 11 | III-week Oct/2017 | Phase Equilibria Phase rule applications. | C&T, PPT | | 12 | IV-week Oct/2017 | Ideal and non-ideal solutions | C&T, PPT | | 13 | I-week Nov/2017 | Identification of organic compounds using spectroscopic methods – basics | C&T, PPT | | 14 | II-week Nov/2017 | Principles and applications. | C&T, PPT | | 15 | III-week Nov/2017 | Case studies and problems | C&T, PPT | | 16 | Assignment 1 | Unit-I | | | 17 | CT1 | Unit-I + Unit-II (Up to buffer solutions) | | | 18 | Assignment 2 | Unit-II + Unit-III | | | 19 | CT2 | Unit-III + Unit-IV | | #### COURSE ASSESSMENT METHODS | SI. No. | Mode of Assessment | Week/Date | Duration | % of Weightage | |---------|-------------------------|------------------------------------|----------------|----------------| | 1 | Assignment/Quiz/Seminar | Fourth week of August | NA | 5 | | 2 | Cycle Test - 1 | Fourth week of
September | 60 minutes | 20 | | 3 | Assignment/Quiz/Seminar | Third week of October | NA | 5 | | 4 | Cycle Test - 2 | e Test - 2 Second week of November | 60 minutes | 20 | | 5 | End Semester | First week of December | 180
minutes | 50 | | TOTAL | | | | 100 | ## ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals etc. - 1. Morrison and Boyd, A text book of Organic chemistry, 7th Edn, Pearson Education, Singapore Pte Ltd, 2010. - K. Jagadamba Singh, Jaya Singh, Photochemistry and Pericyclic reactions, 3rd Edition. New Age International Publications, 2009. - 3. Atkins, P and Julio De Paula, Physical Chemistry, 9th Edn, W. H. Freeman, 2009. - 4. B. R. Puri and R. Sharma, Principles of Physical Chemistry, S. Chand & Co. - 5. K. J. Laidler, Chemical Kinetics, 3rd Edn, PHI Publishers, 1987 - 6. R. M. Silverstein and F. X. Webster. Spectrometric identification of oganic compounds, 7th Edn, 2017. # COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attachment also) - 1. Feedback from students during committee meetings. - 2. Anonymous feedback through questionnaire (as followed previously) ## COURSE POLICY (including plagiarism, academic honesty, attendance, etc.) - 1. CycleTest I and II will be conducted in regular classes. - 2. The compensation test for those who missed CT-I and II with genuine reason will be conducted in III week of November covering the entire syllabus. 3. Plagiarism is strictly not allowed in assignments. 4. 75% of attendance is compulsory for writing the end semester exam. Compensation classes will be held for making shortage of attendance in 3rd and 4th week of November to be eligible to attend the end semester exam. #### ADDITIONAL COURSE INFORMATION The respective faculty will be available for consultation at times as per the intimation by the faculty. Coordinator M Jally CC-Chairperson HOD Whomsty 12012 Dr. M-Sathiya Temporary Faculty Department of chemistry