NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEMPLATE							
Course Title	Mass Transfer						
Course Code	CLPC20	No. of Credi	ts	3			
Department	Chemical Engineering	Faculty	1	Dr.T.Sivasankar			
Pre-requisites Course Code	CLPC15 - Process Calculations						
Course Coordinator(s) (if, applicable)	-						
Other Course Teacher(s)/Tutor(s) E-mail	ssankar@nitt.edu	Telephone N	lo.	0431-2503131			
Course Type	√ Core course	Electi	ve	course			
COURSE OVERVIEW							
This course will provide the r	equired basics of molecular n	nass transfer tha	ıt wil	I be happening in most of			
the chemical engineering un	it operations. Diffusion is the	basic phenome	ena l	lying in this process. The			
basic theories behind these	diffusion and the analogies	between heat,	mom	nentum and mass tranfer			
would be dealt with. The n	would be dealt with. The mass transfer that occurs in gas/liquid/solid-gas/liquid systems would be						
elaborated. The design of ma	ajor columns like adsorption, h	numidification, dr	ying	and crystallization based			
on the mass tranfer concepts	would be elaborated.						
COURSE OBJECTIVES							
 To learn the concept of diffusion in gas, liquid & solid. To understand the basics of interphase mass transfer. To learn application of gas-liquid operation and simultaneous heat and mass transfer operations. 							
COURSE OUTCOMES (CO)							
Course Outcomes				Aligned Programme Outcomes (PO)			
1. Will be familiar with the	basic phenomenon of ma	ss transfer					
involving phases.							
2. Will be able to apply th	e mathematical and desigr	concepts of					
mass transfer in gas-lic	ansfer in gas-liquid systems like absorption, PO2,			PO2, PO3, PO5, PO11,			
humidification, drying a	ind crystallization.			PO12			
	nowledge of required optim	um condition					
for a gas-liquid system	• • •						

COURSE TEACHING AND LEARNING ACTIVITIES						
Si.No.	Week	Торіс	Mode of Delivery			
1.	Week 1	Basics of Mass Transfer (MT), Various MT operations & their application in chemical engineering.	Chalk and Talk / PPT			
2.	Week 2	Equilibrium basis in MT, Molecular Diffusion, Interphase MT.	Chalk and Talk / PPT			
3.	Week 3	Fick's Law of diffusion, Binary, Eddy, Steady state, Pseudo molecular diffusion for gases, Multicomponent diffusion	Chalk and Talk / PPT			
4.	Week 4	Diffusion in liquids & solids, diffusion predictions, Unsteady state diffusion	Chalk and Talk / PPT			
5.	Week 5	MT coefficients, Theories of MT	Chalk and Talk / PPT			
6.	Week 6	Dimensional analysis, Analogies between heat, momentum & heat transfer	Chalk and Talk / PPT			
7.	Week 7	G-L phase controlled systems, Individual & overall MT coefficients	Chalk and Talk / PPT			
8.	Week 8	Gas Absorption: Columns-Types, factors affecting the operation, Equilibrium	Chalk and Talk / PPT			
9.	Week 9	Operating line (OL) for counter current/co- current absorber & stripper plate column, L/G ratios, No. of columns and Height	Chalk and Talk / PPT			
10.	Week 10	OL for counter current/co-current absorber & stripper packed column, L/G ratios, HETP	Chalk and Talk / PPT			
11.	Week 11	Humidification: Basics definitions, wet bulb theory	Chalk and Talk / PPT			
12.	Week 12	Cooling towers: Types, OL & Height of the humidifiers and dehumidifiers	Chalk and Talk / PPT			
13.	Week 13	Drying: Equilibrium, Hysteresis, types of dryers, drying behavior.	Chalk and Talk / PPT			
14.	Week 14	Falling rate & constant rate period. Crystallization: Crystal growth, solubility curves, equilibrium, HT & MT	Chalk and Talk / PPT			
15.	Week 15	Nucleation, crystallization equipment, MSMPR crystallization model	Chalk and Talk / PPT			

COURSE ASSESSMENT METHODS							
Si.No.	Mode of Assessment	Week/Date	Duration	% Weightage			
1	Assessment – 1 (written)	Week 6	1 hr	20			
2	Assessment – 2 (written)	Week 12	1 hr	20			
3	Assessment – 3 (Assignment/Miniproject)	Week 10		10			
4	Assessment – 4 (written)	Week 16	3 hrs	50			

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc.

- 1. R.E. Treybal, "Mass Transfer Operations", 3rd Edn., McGraw Hill Book Co., New York, 1981.
- 2. N. Anantharaman and K.M.Meera Sheriffa Begum, "Mass Transfer Theory and Practice", Printice Hall of India Pvt. Ltd., New Delhi, 2013.
- 3. A.S.Foust, "Principles of Unit Operations", 2nd Edition, Wiley & Sons, New York, 1980.
- 4. J. M. Coulson and J. F. Richardson, "Chemical Engineering", 5th Edition Vol. II, P Butterworth Heinemann, New, 2002.
- 5. C.J.Geankoplis, "Transport Processes and Separation Process Principles," IV edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2004.
- 6. W.L. McCabe, J.C. Smith and P. Harriot, "Unit Operations of Chemical Engineering", 7th Edn., McGraw Hill Book Co., New York, 2004.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

Course Exit survey will be collected at the end of the semester before the start of semester examination through online. Students can log in their MIS account to give the feedback. Mid semester feedback will also be obtained for the effective teaching learning process.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- Attending classes regularly and continuously is required for the students to understand the concepts. Students should maintain 75% attendance.
- If the student misses (due to valid reason) either Assessment-1 or Assessment-2, he/she
 will be given a option to appear for Reassessment which covers the portion of the two
 assessment.
- Participation in the discussions is mandatory during the tutorial classes.
- Strict academic disciplines have to be maintained inside the class room.

ADDITIONAL COURSE INFORMATION

The Course Coordinator is available for consultation at times that are displayed on the coordinator's office notice board. Queries may also be emailed to the Course Coordinator directly at **ssankar@nitt.edu**

FOR SENATE'S CONSIDERATION

Course Faculty _

CC-Chairperson

HOD