NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI-620015 DEPARTMENT OF CHEMICAL ENGINEERING

	COURSE	DUTLINE				
Course Title	INTRODUCTION TO	CHEMICAL E	NGIN	EERII	NG	
Course Code	CLIRBS101	No. of Credits	L	T	P	C
			2	0	0	2
Department	Chemical Engineering	Faculty	Dr.P.	Sivash	anmug	am
Course Coordinator(s) (if, applicable)	Dr.P.Sivashanmugam					
Other Course Teacher(s)/Tutor(s) E-mail		Telephone No.	0431-	-250310)6	
Course Type	Institute Requirement					
Course Type	Institute Requirement					

COURSE OVERVIEW

This course is offered in first semetser and with objective of understanding general idea about chemical engineering and its principles

COURSE OBJECTIVES

To give a comprehensive knowledge on various aspects practiced in chemical engineering To get an an idea about the sources of information on chemical engineering related topics.

COURSE	OUTCOMES	(CO)

Course Outcomes	Aligned Programme Outcomes (PO)
COURSE OUTCOME	
Upon completing the course, the student will be able to	
the capability to understand chemical engineering principles	PO1, PO2, PO3, PO5, PO8, PO9, PO11 and PO10
acquire a the capability to apply basic physics and	PO1, PO2, PO4, PO5, PO8,
chemistry principles in chemical engineering	PO9,PO11 and PO12
the proficiency to integrate the data and formulate the mass	
and energy balance in chemical engineering problems.	PO1, PO2, PO3, PO5, PO8, PO9,
	PO11 and PO12
the capability to use mathematical knowledge for	
solving chemical engineering problems with and	
without chemical reactions	PO1, PO2,PO3, PO5, PO8, PO9,
	PO11 and PO12

COURSE TEACHING AND LEARNING ACTIVITIES (*: It is likely that some of the classes will be lost due to holidays and hence the semester will go upto 14 weeks)

S.No.	Week	Topic	Mode of Delivery
			inious of Belivery

1	Week 1	Overview of chemical Engineering	PPT, Chalk and talk
2	Week 1	Introduction to Unit Operations	PPT, Chalk and talk
3	Week 2	Introduction to Unit Processes	PPT, Chalk and talk
4	Week 2	Development of Process Flow Sheeting	PPT, Chalk and talk
5	Week 3	Physio-Chemical Calculations-I	PPT, Chalk and talk
6	Week 3	Physio-Chemical Calculations-II	PPT, Chalk and talk
7	Week 4	Tutorial Problem solving and discussion	PPT, Chalk and talk
8	Week 4	Conservation Equations in Chemical Engineering	PPT, Chalk and talk
9	Week 5	Principles and Applications of flow of Fluids-I	PPT, Chalk and talk
10	Week 5	Principles and Applications of flow of Fluids-II	PPT, Chalk and talk
		Cycle TEST -I	
11	Week 6	Tutorial Problem solving and discussion	PPT, Chalk and talk
12	Week 6	Principles and Applications of particle Mechanics-	PPT, Chalk and talk
13	Week 7	Principles and Applications of particle Mechanics-	PPT, Chalk and talk
14	Week 7	Tutorial Problem solving and discussion	PPT, Chalk and talk
15	Week 8	Principles and Applications of Heat transfer-I	PPT, Chalk and talk
16	Week 8	Principles and Applications of Heat transfer-II	PPT, Chalk and talk
17	Week 9	Tutorial Problem solving and discussion	PPT, Chalk and talk
18	Week 9	Principles and Applications of Mass transfer-I	PPT, Chalk and talk
19	Week 10	Principles and Applications of Mass transfer-II	PPT, Chalk and talk
20	Week 10	Principles and Applications of Mass transfer-III	PPT, Chalk and talk
21	Week 11	Tutorial Problem solving and discussion	PPT, Chalk and talk
		Cycle TEST -II	
22	Week 11	Chemical Reaction Kinetics	PPT, Chalk and talk
23	Week 12	Concepts of Scale up	PPT, Chalk and talk
24	Week 12	Modeling and Simulation Techniques in Chemical Processes-I	PPT, Chalk and talk
25	Week 13	Modeling and Simulation Techniques in Chemical Processes-II	PPT, Chalk and talk

26	Week 13	Significance of Chemical Engineering in Food,	PPT, Chalk and talk
		Health, Energy and Environment	
27	Week 14	Few Case studies: State of the Art Technology in	PPT, Chalk and talk
		Chemical Industries	
28	Week 14	Tutorial Problem solving and discussion	PPT, Chalk and talk
29	Week 12	Overview of ideas learnt in this course	Chalk and talk
		Semester Examination	

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	I cycle test	5 th week since commencement	1 hour	25%
2	Il cycle test	10 ^h week since commencement	1 hour	25%
3	Retest (Only for Absentees)	10 ^h week since commencement	1 hour	25%
5	End semester examination	16 th week since commencement	1 hour	50%

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- 1. S. K. Ghosal, S. K., Sanyal and S. Datta, Introduction to Chemical Engineering, TMH Book Company, 1998
- 2. Anderson L. B. and L. A. Wenzel, Introduction to Chemical Engineernig, McGraw Hill Publications, 1998.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1) Feed back is planned to be collected twice; once in the mid semester and one at the end of course as soon as classes are over.
- 2) The academic performance of the students will be assessed based on 2 cycle tests (each 20 marks), one final examination (50 marks) and seminars (10 marks).
- 3) Suitable mapping of Cos with Pos will be made and attainment will be calculated.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- It is expected that the students will not indulge in any form of malpractice in Examinations. Seminar
 presentation will focus on the emerging trends.
- 2) Attendance of 75% and above is expected. The 25% allowance is given for absence due to illness/institute related activities(sports/competitions/seminars etc)

ADDITIONAL COURSE INFORMATION

FOR SENATE'S CONSIDE	
Course Faculty	CC-Chairperson HOD MUSIN