

DEPARTMENT OF COMPUTER APPLICATIONS

	COURSE PLAI	N – PART I			
Name of the					
programme and	MCA				
specialization					
Course Title	DATA MINING LAB				
Course Code	CA 707 No. of Credits		2		
Course Code of Pre- requisite subject(s)	CA 721				
Session	July 2021	Section (if, applicable)	A & B		
Name of Faculty	Dr. Balaji Ganesh R	Department	Computer Applications		
Official Email	rbalaji@nitt.edu	Telephone No.	8220037222		
Name of PAC Chairman	Dr. (Mrs.) B. Janet, Assistant Professor				
Official E-mail	janet@nitt.edu	Telephone No.	0431-2503742		
Course Type (please	Core course	Elective cou	rse		
tick appropriately)	V constitution		.00		
Syllabus (approved in	PoC)				
Exercises to	B03)				
 Understand the data sets and data preprocessing using ETL tools 					
	working of algorithms for	•			
	ation, clustering and regre		on association rule		
COURSE OBJECTIVES					
To make the students					
 Familiarize with the ETL (Extract, Transform, Load) tools like Weka for Data 					
exploration and processing					
 Demonstrate the various Data mining tasks with Weka Explorer and Sample 					
Datasets					
MAPPING OF COs with POs					
Course Outcomes			Programme Outcomes (PO) (Enter Numbers only)		
1. Work with ETL tools			1, 2, 5		
2. Demonstrate the classification, clustering and etc. in large					
data sets.	1, 2, 3				
3. Ability to add mining algorithms as a component to the exiting			1, 2, 3, 4		
tools					
4. Ability to apply mining techniques for realistic data.			1, 2, 8, 9		

COURSE PLAN - PART II

COURSE OVERVIEW

This course makes students to install, configure networks and build the networks according to the requirement and implement the network principles using Simulation software Packet Tracer

COURSE TEACHING AND LEARNING ACTIVITIES

S. No.	Week/Contact Hours	Topic	Mode of Delivery
1	Week 1	Introduction to Weka ETL tool, Data Loading, Visualization	PPT, Demo in MS Teams using Weka
2	Week 2	Data Preprocessing, Cleaning, Discretization	PPT, Demo in MS Teams using Weka
3	Week 3	Association Rule Mining using Apriori Algorithm	PPT, Demo in MS Teams using Weka
4	Week 4	Association Rule Mining using predictiveApriori Algorithm	PPT, Demo in MS Teams using Weka
5	Week 5	Classification Rule process on sample dataset (ZeroR classifier)	PPT, Demo in MS Teams using Weka
6	Week 6	Classification Rule process on sample dataset (Decision Tree- j48 algorithm)	PPT, Demo in MS Teams using Weka
7	Week 7	Classification Rule process on sample dataset (Decision Treeid3 algorithm)	PPT, Demo in MS Teams using Weka
8	Week 8	Demonstration of Naïve Bayes algorithm	PPT, Demo in MS Teams using Weka
9	Week 9	Prediction using Regression Model (Linear Regression, KNN)	PPT, Demo in MS Teams using Weka
10	Week 10	Clustering using simple K-means, EM, Hierarchical Clustering	PPT, Demo in MS Teams using Weka

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

SI. No.	Mode of Assessment	Week/Date	Duration	% Weightage	Mode of Conduct
1	Exercises Demonstration – I	6 th Week	-	15	MS Teams / Cisco Packet Tracer
2	Exercises Demonstration – II	10 th Week	-	15	MS Teams / Cisco Packet Tracer
3	Laboratory Report	Every week	-	10	Google Forms
4	Online Assessment – Objective type	10 th Week	1 hour	15	Instructure Canvas
5	Project	11 th Week	-	15	MS Teams
СРА	Compensation Assessment*	12 th Week	1 hour	15	Instructure Canvas
6	Final Assessment & Viva Voce Examination	12 th Week	3 hours	30	MS Teams

^{*}mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- The students through the class representative may give their feedback at any time to the faculty which will be duly addressed.
- The students may give their feedback during class committee meetings.

COURSE POLICY (including compensation assessment to be specified)

Compensation Assessment

One compensation assessment for absentees in assessment (other than the final assessment) is mandatory. Only genuine cases of absence shall be considered.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- ➤ A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

- Weka Tool can be downloaded from https://waikato.github.io/weka-wiki/downloading-weka/
- Reference Book: "The Weka Workbench- Data Mining: Practical Machine Learning Tools and Techniques", Eibe Frank, Mark A.Hall, Morgan Kaufmann, Fourth Edition, 2016
- NPTEL resources: Learning Analytics Tools, By Prof. Ramkumar Rajendran, IIT Bombay available at https://nptel.ac.in/courses/127/101/106101224

FOR APPROVAL

Course Faculty_

Dr.R.Balaji Ganesh

PDF

CC- Chairperson _ Dr.(Mrs.) B.Janet,

Assistant Professor

OD

Prof. Dr.P.J.A. Alphonse Professor and Head

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2018	2017	2016	2015	
35% or (Class average/2) whichever is greater.		(Peak/3) or (Class Average/2) whichever is lower		40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.