

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF COMPUTER APPLICATIONS

COURSE PLAN – PART I					
Name of the programme and specialization	M. Tech Data Analytics				
Course Title	Machine Learning Lab				
Course Code	CA 610	No. of Credits	2		
Course Code of Pre- requisite subject(s)	CA 605				
Session	January 2021	Section (if, applicable)			
Name of Faculty	Dr. U. Srinivasulu Reddy	Department	Computer Applications		
Official Email	usreddy@nitt.edu	Telephone No.	+91-431-2503746		
Name of Course Coordinator(s) (if, applicable)					
Official E-mail		Telephone No.			
Course Type (please tick appropriately)	Core course	Elective cou	Irse		
Syllabus (approved in	BoS)				
Exercises to solve the real-	-world problems using the f	ollowing machine learn	ing methods:		
Linear Reg	gression				
Logistic Re	egression				
Multi-Class	ss Classification				
Neural Ne	etworks				
Support V	Support Vector Machines				
 K-Means Clustering & PCA 					
2. Develop programs to implement Anomaly Detection & Recommendation Systems.					
3. Implement GPU computing models to solving some of the problems mentioned in Problem 1.					
COURSE OBJECTIVES					
To learn different machine learning techniques.					
MAPPING OF COs with POs					
Course Outcomes			Programme Outcomes (PO) (Enter Numbers only)		
1. Implement and apply machine learning algorithms to solve problems			1,2,3,4,5		
2. Select appropriate algorithms for solving a of real-world problems. 1,2 ,			1,2,4,5,6		

	COURSE PLAN – PART II				
COURS	SE OVERVIEW				
COURS	SE TEACHING AND LE	ARNING ACTIVITIES			
S.No.	Week/Contact Hours	Lab Exercises	Experiment Outcome (Documentation)		
1	08/02/2021	Literature Review and Data Collection	 Problem Statement Dataset Description 		
2	15/02/2021	Problem statement	Write up about 200 words about the significance of problem		
3	22/02/2021	Data pre-processing	 Apply standard pre- processing technique Apply data visualization technique Code preferably python 		
4	01/03/2021	Data pre-processing	Make the dataset ready to fit the model		
5	08/03/2021	Model Selection (ML models/Deep Learning Models)	Find the ML/ DL approach best suited to the dataset		
6	15/03/2021	Model preparation	Fit the model on your dataset		
7	22/03/2021	Training the model	Fine tune your model based on hyper parameter		
8	05/04/2021	Model Evaluation	Choose suitable metric to evaluate the model		
9	12/04/2021	Results and Discussions	Compare the model performance using suitable plot		
10	19/04/2021	Report submission	Structured as chapter 12345 (in the above mentioned order)		

COURSE ASSESSMENT METHODS (shall range from 4 to 6)					
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage	
1	Assessment 1	22/02/2021	3 Hr	15	
2	Assessment 2	22/03/2021	3 Hr	15	
3	Assessment 3	19/04/2021	3 Hr	15	
4	Weekly demo, Observation, and Report submission	26/04/2021	3 Hr	25	
СРА	Compensation Assessment *	April 2021	3 Hr	30	
5	End Semester	April 2021	3 Hrs	30	

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- The students through the class representative may give their feedback at any time to the course chairman which will be duly addressed.
- > The students may also give their feedback during class committee meeting.
- Course Outcome Survey' form will be distributed on the last working day to all the

students and the feedback on various rubrics will be analyzed.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

The student can the availability of faculty member over phone as well as mail. They can clarify their doubts any time by taking prior appointment.

COMPENSATION ASSESSMENT POLICY

One Compensation assessment will be conducted for absentees in assessments (except final assessment) is mandatory due to genuine reasons.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.

- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

FOR APPROVAL

Dr. U. Srinivasulu Reddy Course Faculty

Dr. B. Balaji **PAC-** Chairperson

Dr. I Alphonse HOD

<u>Guidelines</u>

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2018	2017	2016	2015	
		(Peak/3) or (Cl whichever is low		40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.