

DEPARTMENT OF COMPUTER APPLICATIONS

	COURSE PL	AN – PART I	
Name of the programme and specialization	MASTER OF COMPU	ITER APPLICATIONS	* This course management
*Course Title	DATA MINING LAB	blems of data and in	oomplex pro
Course Code	CA707	No. of Credits	2 at deem
Course Code of Pre- requisite subject(s)	CA721 somensions in	also provides handle-o	This course
Session	July 2020	Section (if, applicable)	В
Name of Faculty	Dr.P.CHITRA	Department	CA 3 329U00
Official Email	chitrap@nitt.edu	Telephone No.	9715258867
Name of Course Coordinator(s) (if, applicable)	Dr.B.JANET	k t Introducti	new 1
Official E-mail	janet@nitt.edu	Telephone No.	0431 2503741
Course Type (please tick appropriately)	Core course	Elective co	urse
		and the second	
Syllabus (approved in	785		
	d data preprocessing ustering and regression	using ETL Tool, a	ssociation rule mining,
COURSE OBJECTIVE			
Exercises to			
 Demonstrate th 	data sets and data prep e working of algorithm ation, clustering and reg	s for data mining tas	ools ks such association rule
MAPPING OF COs wit	h POs	melumi E3	S Week
Course Outcomes			Programme Outcomes (PO) (Enter Numbers only)
Work with ETL to	cools	BE WAY	PO1
Demonstrate the data sets	e classification, clusterin	g and etc. in large	PO2
Ability to add mitools.	ining algorithms as a cor	mponent to the exiting	PO3
Ability to apply r	mining techniques for re-	alistic data.	PO4

COURSE PLAN - PART II

COURSE OVERVIEW

- This course is designed to expand students' knowledge and skills gained in database management courses and look in depth at data warehousing and data mining methods.
- The course examines the database architecture and technologies required for solving complex problems of data and information management, information retrieval, and knowledge discovery facing modern organizations. Case studies of organizations using these technologies to support business intelligence gathering and decision making are examined.
- This course also provides hands-on experience with state-of-the-art data warehousing and data mining methods and tools.

S.No. Week/Contact Hours		Topic Chitrap@nn.edu Teleph	(Add more rows) Mode of Delivery	
1	Week 1	Introduction about data mining and WEKA tool (Demo Class)	PPT through video conferencing in MS Teams	
2	Week 2	Basic Exercises on Data Mining	Google Classroom	
3	Week 3	Data using ETL tools	Google Classroom	
4 nottslore	Week 4	Data using Preprocessing	Google Classroom	
5	Week 5	Implementation of measures of proximity	Google Classroom	
6	Week 6	Data using the trees generation	Google Classroom	
7	Week 7	Demo on Classification tools	Google Classroom	
8	Week 8	Learning and implementing k-means clustering	Google Classroom	

9	Week 9	Learning Naïve and Decision Tress classifier in WEKA	Google Classroom
. 10	Week 10	Implementation of outlier detection algorithms (nearest neighbor and Mahalanobis)	Google Classroom
11	Week 11	Feature Selection, Cleaning, and Preprocessing to Construct an Input from Data	Google Classroom
12	Week 12	Calculating Proximity of Two Binary Object Vectors With Simple Matching, Jaccard Similarity, Cosine Similarity	Google Classroom
13	Week 13	Correlation Analysis for Two Features	Google Classroom

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1 co etn	Lab Assessment 1	anortes enorte	2 hours	10
2	Lab Assessment 2	issessment will be	2 hours	10
3	Lab Assessment 3	ded for the offeno penalty of zero ma	2 hours	10
4	Lab Assessment 4	settimento y sentitas	2 hours	10
СРА	Compensation Assessment*	If the stu2 nt is for	1 hour	10
5	Project	olmebuon fanist	above policy a	20
6	Final Assessment *		2 hours	30

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

 Understand data mining principles and techniques: Introduce DM as a cutting edge business intelligence method and acquaint the students with the DM techniques for building competitive advantage through proactive analysis, predictive modelling, and identifying new trends and behaviours.

Learning objectives include:

- Building basic terminology.
- Learning how to gather and analyze large sets of data to gain useful business understanding. 4. Learning how to produce a quantitative analysis report/memo with

the necessary information to make decisions.

- · Describing and demonstrating basic data mining algorithms, methods, and tools
- Identifying business applications of data mining
 Overview of the developing areas web mining, text mining, and ethical aspects of data mining.

COURSE POLICY (including compensation assessment to be specified)

- Practical exposure on implementation of well-known data mining tasks.
- Exposure to real life data sets for analysis and prediction.
- Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.
- Handling a small data mining project for a given practical domain.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- > The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY	is amilahing of va	Cmandatóry, rei
ere menue en diede intellerer en fortwirt eyew ent	nomem) YEVAU2	TIX9-SERUGO
FOR APPROVAL	ng galampanah ba	NINGSHI -
politican substanti plenera enlicento lloudordi equi	MM22/10.	L FS
Course Faculty P. MC CC- Chairperson _		HOD Dr.P.J.A. Alphonse

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in		P.G.		
2018	2017	2016	2015	
35% or (Class		(Peak/3) or (Cl whichever is lov		40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.