DEPARTMENT OF COMPUTER APPLICATIONS

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I				
Name of the programme and specialization	Master of Computer Applications			
Course Title	Computer Organization and Architecture			
Course Code	CA715	No. of Credits	3	
Course Code of Pre- requisite subject(s)	NIL			
Session	July 2019	Section (if, applicable)	A and B	
Name of Faculty	Dr. P.J.A. Alphonse	Department	Computer Applications	
Email	alphonse@nitt.edu	Telephone No.	0431-2503742	
Name of PAC Chairman	Dr.S.Nickolas	•	•	
E-mail	nickolas@nitt.edu	Telephone No.	0431-2503739	
Course Type	Core course			

Syllabus (approved in BoS)

Number Systems - Binary Arithmetic - Boolean algebra - Map Simplifications - Gates - Combinational Circuits - Sequential Circuits.

Memory: Internal - External - Memory Organization - Associative - Cache - Virtual memory.

CPU: Arithmetic And Logic Unit - Instruction Sets - RISC - CISC - Instruction pipeline - Addressing modes and formats - Register organization - Control Unit Operation - Processor organization.

External Devices: I/O modules - Programmed I/O - Interrupt Driven I/O - Direct Memory Access - I/O Channels - Asynchronous Data Transfer.

Processors: Parallel – Multi-core – Mobile – Embedded – GPU and TPU.

REFERENCES:

- 1. William Stallings, "Computer Organization and Architecture", 7th Edition, 2006, PHI.
- 2. M. Morris Mano and Michael D. Ciletti, "Digital Design", 4th Edition, 2007, Pearson Education.
- 3. Hennessy J. and Patterson D., "Computer Architecture A Quantitative Approach", 1990,

Morgan Kaufmann.

COURSE OBJECTIVE(S)

- 1. To understand the data representation in a digital computer and explain how operations are performed by computer circuits
- 2. To study and analyze the internal components of a computer and evaluate the performance of CPU, memory and I/O operations
- 3. Study and analyze the modern processor architecture

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)	
Define binary number system and arithmetic operations. Design a Boolean circuit for a given problem	PO I, II, III, IV, V	
2. Analyze the different types of memory and their organization	PO I, II, III, IV, V	
3.Describe the functional units of the CPU and its organization	PO I, II, III, IV, V	
4.Discover the working and organization of I/O Devices	PO I, II, III, IV, V	
5. Evaluate the different modern processor architecture.	PO I, II, III, IV, V	

COURSE PLAN – PART II

COURSE OVERVIEW

The Computer Organization and Architecture course deals with the study of data representation in computers and its internal circuits. It also explains the internal components of computer like CPU, Memory and I/O Devices and their characteristics. Various modern processor architecture will be evaluated.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Conta ct Hours	Topic	Mode of Delivery
1	Week 1	Introduction and Binary Number System Binary Arithmetic	Classroom activity

		Boolean Algebra		
2	Week 2	Map Simplifications	Classroom activity	
		Gates		
3	Week 3	Combinational Circuits		
		Sequential Circuits	Classroom activity	
		Memory: Internal		
		External	C1	
4	Week 4	Memory Organization	Classroom activity	
		Associative Cache Virtual memory		
		CPU: Arithmetic And Logic Unit	C1	
5	Week 5	Instruction Sets	Classroom activity	
		RISC - CISC		
6	Week 6	Instruction pipeline		
		Addressing modes and formats	Classroom activity	
		Register organization		
	Week 7	Control Unit Operation		
7		Processor organization	Classroom activity	
		External Devices: I/O modules		
	Week 8	Programmed I/O	G1	
8		Interrupt Driven I/O	Classroom activity	
		Direct Memory Access		
	Week 9	I/O Channels	G1	
9		Asynchronous Data Transfer	Classroom activity	
		Processors: Parallel		
10	Week 10	Multi-core	C1 (* '.'	
		Mobile	Classroom activity	
		Embedded and Cloud computing/ IOT		

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle Test 1	6 th Week	60 Minutes	20
2	Cycle Test 2	10 th Week	60 Minutes	20
3	Assignment	9 th week	-	10
4	Final Assessment	-	180 Minutes	50

COURSE EXIT SURVEY

- The students through the class representative may give their feedback at any time to the course coordinator which will be duly addressed.
- The students may give their feedback during class committee meetings.

COURSE POLICY

MODE OF CORRESPONDENCE

By Email: alphonse@nitt.edu

COMPENSATION ASSESSMENT POLICY

Compensation assessment will be conducted for absentees in cycle test I or cycle test II only after the submission of medical or On-Duty certificates signed by competent authority.

ATTENDANCE POLICY

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

a) The passing minimum shall be as per the regulations. Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.

FOR APPROVAL

Course Faculty CC-Chairperson & Wile All HOD S-R-8

Page 4 of 4