

Department of Computer Applications National Institute of Technology-Tiruchirappalli

	COURSE PLAN – PA	RTI		
Name of the programme and specialization	MSc- COMPUTER SCIENCE			
Course Title	DATA STRUCTURES AND ALGORITHMS			
Course Code	CAS 765	No. of Credits	3	
Course Code of Pre-requisite subject(s)	Nil			
Session	July 2019	Section (if, applicable)	NA	
Name of Faculty	Dr. C. Sivaraj	Department	Computer Applications	
E-mail	sivaraj@nitt.edu	Telephone No.	7339431431	
Name of Course Coordinator(s) (if, applicable)	Dr. Michael Arock			
E-mail	michael@nitt.edu	Telephone No.		
Course Type	Core course	_	•	

Syllabus (approved in BoS)

Introduction – Arrays – Structures – Stack: Definition and examples, Representing Stacks - Queues and lists: Queue and its Representation, lists – Applications of Stack, Queue and Linked Lists-Basics of Programming and Data Structures.

Binary Trees – Binary Tree Representations – node representation, internal and external nodes, implicit array representation - Operations on binary trees – Binary tree Traversals - Representing Lists as Binary Trees–Search Trees.

Algorithms – Analyzing and Designing algorithms – Asymptotic notations – Recurrences – Methods to solve recurrences – Basic sorting techniques – selection sort, bubble sort, insertion sort and merge sort – Basic Search Techniques – linear search and binary search.

Revisiting various operations of different data structures with time complexity analysis – Design and Analysis of Heap Sort - Quick Sort – Sorting in linear time – Radix sort – Selection in linear time.

Design Strategies: Recursion - Divide and conquer methodology – Multiplication of large integers – Strassen's matrix multiplication – Greedy method – Prim's algorithm – Kruskal's algorithm – algorithm for Huffman codes – Dynamic Programming – Backtracking and Branch and bound method

ESSENTIAL READINGS : Textbooks, reference books, etc

- 1. Stephen Prata,"C++ Primer Plus", 6th Edition ,Addison-Wesley Professional, 2011.
- 2. Bjarne Stroustrup, "Programming: Principles and Practice Using C++,1st Edition, Addison-Wesley Professional, 2008
- 3. Bruce Eckel ,"Thinking in C++: Introduction to Standard C++: Volume One" 2nd Edition, PrenticeHall, 2000
- 4. T.H.Cormen, C.E.Leiserson, R.L.Rivest and C. Stein, "Introduction to algorithms", 3rd edition, 2009, MIT Press.
- 5. P. H. Dave and H. B.Dave, "Design and Analysis of Algorithms", 2009, Pearson Education India.
- 6. S. Lipschutz and G.A.V. Pai, "Data Structures", 2010, Tata McGraw-Hill.
- 7. Clifford A. Shaffer, "Practical Introduction to Data Structures and Algorithm Analysis", 2000, 2nd edition, Prentice Hall.
- 8. P. Brass, "Advanced Data Structures", 2008, Cambridge University Press.

COURSE OBJECTIVES

- → To learn the basics of programing
- → To learn basic concepts of data structures
- \rightarrow To design and analyses the algorithms

MAPPING OF Cos with POs

COURSE OUTCOMES (CO	Programme Outcomes (PO)
Design and implement abstract data types/Data structures.	1,2,5,8
Design and analysis of algorithms	1,2,3,5

COURSE PLAN – PART II

COURSE OVERVIEW

The purpose of the course is to provide the students with solid foundations in the basic concepts of various data structures and algorithms. This course teaches the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter. This course is also showing the correctness of the algorithms and studying their computational complexities.

Week	#Class	Торіс	Mode of Delivery
1	Class I	Introduction to Data structures and its important	Talk, Chalk
	Class II	Arrays and Linked List ADT	Talk, Chalk
	Class III	Stack: Definition and examples, Representing Stacks, Stack implementation using array and linked list	Talk, Chalk

	-		
2	Class I	Queues: Queue and its Representation, Queue implementation using array and linked list	Talk, Chalk
	Class II	Applications of Stack, Expression evaluation Backtracking, Memory management, run-time environment for nested language features.	Talk, Chalk
	Class III	Applications of Queue and Linked Lists: CPU scheduling, Breadth First search	Talk, Chalk
3	Class I	Binary Trees basics and terminologies	Talk, Chalk
	Class II	Binary Tree Representations – node representation, internal and external nodes, implicit array representation	Talk, Chalk
	Class III	Operations on binary trees and its implementation	Talk, Chalk
	Class IV	Binary tree Traversals.	Talk, Chalk, Power point presentation
4	Class I	Representing Lists as Binary Trees	Talk, Chalk
	Class II	Binary Search Tree concepts	Talk, Chalk, Power point presentation
	Class III	Binary Search Tree operations	Talk, Chalk
5	Class I	Algorithms – Analyzing and Designing algorithms	Talk, Chalk
	Class II	Asymptotic notations	Talk, Chalk
	Class III	Recurrences and its solving methods	Talk, Chalk
	Class IV	Basics of sorting techniques, selection sort	Power point presentation
6	Class I	Bubble sort, Insertion sort	Talk, Chalk, Power point presentation
	Class II	Merge sort	Power point presentation
	Class III	Basic Search Techniques : linear search	Talk, Chalk, Power point presentation
7	Class I	Basic Search Techniques : binary search	Power point presentation
	Class II	Revisiting various operations of different data structures with time complexity analysis	Talk, Chalk, Power point presentation
	Class III	Revisiting various operations of different data structures with time complexity analysis	Talk, Chalk, Power point presentation
	Class IV	Design and Analysis of Heap Sort	Talk, Chalk, Power point presentation
8	Class I	Quick Sort	Talk, Chalk
	Class II	Quick Sort – Sorting in linear time	Talk, Chalk, Power point presentation
	Class III	Radix sort – Selection in linear time.	Talk, Chalk

	Class IV	Design Strategies: Recursion	Talk, Chalk, Power point presentation
9	Class I	Divide and conquer methodology	Talk, Chalk, Power point presentation
	Class II	Multiplication of large integers	Talk, Chalk
	Class III	Strassen's matrix multiplication	Talk, Chalk
10	Class I	Greedy method : Prim's algorithm, Kruskal's algorithm	Talk, Chalk
	Class II	algorithm for Huffman codes	Talk, Chalk
	Class III	Dynamic Programming – Backtracking and Branch and bound method	Talk, Chalk

COURSE ASSESSMENT METHODS			
Mode of Assessment	Week/Date	Duration	% Weightage
Cycle Test 1	6 th week	60 Minutes	20%
Projects	Every week	-	30%
Assignment/Seminar	7 th to 10 th Week	6 days	10%
Compensation Assessment*	12 th week	120 Minutes	40%
Semester Exam	December	180 Minutes	4 0%
	Mode of AssessmentCycle Test 1ProjectsAssignment/SeminarCompensation Assessment*	Mode of AssessmentWeek/DateCycle Test 16th weekProjectsEvery weekAssignment/Seminar7th to 10th WeekCompensation Assessment*12th week	Mode of AssessmentWeek/DateDurationCycle Test 16th week60 MinutesProjectsEvery week-Assignment/Seminar7th to 10th Week6 daysCompensation Assessment*12th week120 Minutes

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

1. The students through the class rep may give their feedback at any time to the course

coordinator which will be duly addressed.

- 2. The students may also give their feedback during Class Committee meeting.
- 3. 'Course Outcome Survey' form will be distributed on the last working day to all the students and the feedback on various rubrics will be analyzed.
- 4. The COs will be computed after arriving at the final marks.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

At classes:

Interactive and productive interactions are anticipated. Abusive terms are highly restricted. Attendance is noted for every class. Appreciate if they are willing to prepare for placement and participating social services after informing properly to the department.

Exam Policy:

Exams are equal to all the students. No privileges will be given to any one at any cost. Students who are all absent for both the cycle test for a genuine reason may be given CPA.

Assignments and projects are mandatory and should be submitted by the notification of the teacher. **Basic Policies on dishonest or Misconduct:**

Students are encouraged to come with notebooks and encouraged to note down from teachers lecture. Asked to avoid electronic gadgets and unwanted notes at the time of examinations. Copying and re using existing notes for assignments are not appreciable.

Attendance Policy: (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ADDITIONAL COURSE INFORMATION

The students can get their doubts clarified at any time with their faculty member with prior appointment.

For Senate's Consideration

Course Facult

PAC-Chairperson

Metzor HOD S. R. Eslas usbren