

Department of Computer Applications National Institute of Technology Tiruchirappalli

1.Course Outline							
Course Title	Computer Organization and Architecture						
Course Code	CAS763						
Department	СА	No. of Credits	3				
Pre-requisites Course	Knowledge of fundamentals of Digital Computers	Faculty Name	Dr.S.Domnic				
PAC Chairman	Dr.S.Sangeetha						
E-mail	-mail domnic@nitt.edu		0431-2503745				
Course Type	Core Course						

2. Course Overview

The Computer Organization and Architecure course deals with the design principles and various organizational issues of a Digital Computer. Various binary systems for representing information in digital systems, binary arithmetic operations, Boolean algebra, logic gates used in the design of digital systems, simplification of Boolean expressions using map method will be discussed. The procedures for the analysis and design of combinational and sequential circuits will be explained. The components of the computer system such as processor, memory and I/O modules and interconnection of these components will be dealt. The architectural issues such as instruction set design and organization issues such as piplenining will be dealt. Further, various processor technologies will also be taught.

3. Course Objectives

- To understand the basic structure of a digital computer
- To study the operations of internal components

4. Course Outcomes (CO)

Students will be able to:

- Define the Boolean algebra and explain its use in circuit design
- List the different types of memory and distinguish them
- Discriminate the various functional units of CPU and illustrate functioning of I/O devices
- Explain latest processor technologies and evaluate systems for one's own requirements

5. Course Outcome	Aligned Programme Outcome (PO)											
(CO)	РО- 1	РО- 2	РО- 3	РО- 4	РО- 5	РО- 6	РО- 7	РО- 8	РО- 9	РО- 10	РО- 11	РО- 12
Define the Boolean algebra and explain its use in circuit design	S	S	S	Μ	Μ	В	В	В	В	В	В	В
List the different types of memory and distinguish them	S	Μ	S	Μ	Μ	В	В	М	В	В	В	В
Discriminate the various functional units of CPU and illustrate functioning of I/O devices	S	Μ	В	×	Μ	В	М	В	В	В	В	В
Explain latest processor technologies and evaluate systems for one's own requirements	S	Μ	М	Μ	Μ	В	S	В	В	В	В	М

S = 0.6

M = 0.4

B = 0.0

6. Course Teaching and Learning Activities						
Week	Mode of	Topics covered				
	Delivery	Topics covered				
1.	Class-I	Introduction – Computer organization – Computer architecture				
	Class-II	Number systems –Number-Base conversions				
	Class-III	Singed binary number – binary arithmetic - complements				
2.	Class-I	Boolean algebra – basic theorems and properties				
	Class-II	Boolean functions - gates				
	Class-III	Simplification of Boolean functions using algebraic method				
	Class-I	Canonical and standard forms				
3.	Class-II	Map simplifications – two, three and four variable maps				
	Class-III	Don't-care conditions – gate representation(NAND & NOR)				
	Class-I	Combinational circuits – binary adder-subtractor				
4.	Class-II	binary multiplier – magnitude comparator				
	Class-III	Decoders – encoders – multiplexers – demultiplexer				
	Class-I	Sequential cirucuits – latches – flipflops – registers – shift registers				
5.	Class-II	Counters – ripple counters – synchronous counters				
	Class-III	Internal memory – semiconductor main memory				
6.	Class-I	External memory – magnetic disk				
	Class-II	RAID				

Week	Mode of Delivery	Topics covered						
	Class-III	Optical memory - Magnetic tape						
	Class-I	virtual memory						
7.	Class-II	Cache memory						
	Class-III	CPU – Arithmetic and logic unit						
	Class-I	Instruction sets						
8.	Class-II	Instruction sets						
	Class-III	Instruction cycle – addressing modes						
	Class-I	Addressing modes and formats						
9.	Class-II	Instruction pipelining						
	Class-III	Processor organization – register organization						
	Class-I	Control unit operation						
10.	Class-II	External devices – I/O modules						
	Class-III	Programmed I/O						
	Class-I	Interrupt driven I/O						
11.	Class-II	Direct memory access						
	Class-III	I/O channels and processors						
	Class-I	Asynchronous data transfer						
12.	Class-II	Reduced Instruction Set Computers, Complex Instruction Set						
		Computers						
	Class-III	Superscalar processor						
13.	Class-I	Vector processor						
	Class-II	Parallel processor – cluster processor						
	Class-III	Distributed, Embedded and MultiCore processors						

The assessment for this theory paper consists of two cycle tests, assignment and end semester examination. The final marks will be computed for a total of 100.

7. Course Assessment Methods – Theory							
SI. No.	Mode of Assessment	Week/Date	Duration	Weightage(%)			
1.	Cycle Test – 1	6 th week	60 Mins	20			
2.	Cycle Test – 2	10 th week	60 Mins	20			
3.	Assignment-1 and Assignment-2	5 th week and 9 th week		10			
4.	End Semester Exam	-	180 Mins	50			
	Total						

8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

Books

- 1. M. Morris Mano and Michael D. Ciletti, Digital Design, 4 Edn, 2007, Pearson.
- 2. William Stallings, "Computer Organization and Architecture", 7 Edn., 2006, PHI.
- 3. Hayes, J.P. "Computer Architecture and Organization", 3 Edn., 1998, McGraw Hill.

9. Course Exit Survey (mention the ways by which the feedback about the course is assessed and indicate the attainment level)

- The students through the class rep may give their feedback at any time to the course coordinator which will be duly addressed.
- The students may also give their feedback during Class Committee meeting.

10. Course Policy (including plagiarism, academic honesty, attendance, etc.)

Plagiarism

The students are expected to not do malpractice in cycle tests/examinations. If found to copy from bits/other students, action will be taken.

Attendance

100% is a must. However, relaxation upto 25% will be given for leave on emergency requirements (medical, death, etc.) and representing institute events.

Academic Honesty

- Possession of any electronic device, if any, found during the test or exam, the student will be debarred for 3 years from appearing for the exam and this will be printed in the Grade statement/Transcript.
- ii) Tampering of MIS records, if any, found, then the results of the student will be with heldand the student will not be allowed to appear for the Placement interviews conducted by the Office of Training & Placement, besides (i).

11. Additional Course Information

 The students can get their doubts clarified at any time with their faculty member with prior appointment.

For Senate's Consideration

Dr.S.Domnic

Course Faculty

(Dr. S. Sangeetha) **PAC Chairperson**

S.R.Ralasundaram) (Dr. S.R.Balasundaram) HoD