

# Department of Computer Applications National Institute of Technology Tiruchirappalli

| 1.Course Outline                |                                                                  |                |                |
|---------------------------------|------------------------------------------------------------------|----------------|----------------|
| Course Title                    | Mathematical Foundations of Computer Science                     |                |                |
| Course Code                     | CAMI10                                                           |                |                |
| Department                      | СА                                                               | No. of Credits | 3              |
| Pre-requisites<br>Course Code   | NIL                                                              | Faculty Name   | Mrs. K. Bakiya |
| Course Co-<br>ordinator         |                                                                  |                |                |
| E-mail                          | bakiya@nitt.edu                                                  | Telephone No.  | 0431-2503730   |
| Course Type                     | Minor Course                                                     |                |                |
| Course Material<br>available at | https://docs.google.com/file/d/0B8pig2KdTaOBNkk1dHBqaUY3b1U/view |                |                |

### 2. Course Overview

The Course deals with Set theory, Mathematical Logics, Groups, Rings and Fields which emphasizes the computer applications also. Basic Number theory gives clear roadmap on congruence and Modular Exponentiation. Graph Theory delineates Spanning Trees, Euler circuits and Hamiltonian graphs.

#### **3.** Course Objectives

- To acquire skills in solving mathematical and logical problems.
- To comprehend mathematical principles and logic.
- To understand fundamental concepts and tools in discrete mathematics with emphasis on their applications to computer science

# 4. Course Outcomes (CO)

• Apply the concepts of discrete mathematics in the modeling and design of computational problems.

|                                                                          | Aligned Programme Outcome (PO) |         |      |
|--------------------------------------------------------------------------|--------------------------------|---------|------|
| 5. Course Outcome (CO)                                                   | PO-1                           | PO-2    | PO-3 |
| Ability to comprehend the basics Principles and Logic                    | S                              | М       | В    |
| Ability to design the computational Problems                             | S                              | В       | S    |
| Ability to design/Model the logic for a given computer based application | S                              | В       | S    |
| S = 0.6 M =                                                              | 0.4                            | B = 0.0 |      |

| 6. Course Teaching and Learning Activities |             |                                           |                  |  |
|--------------------------------------------|-------------|-------------------------------------------|------------------|--|
| Week                                       | Class       | Topics covered                            | Mode of Delivery |  |
|                                            | Class-I     | Set Theory: Sets and operations           | Chalk and Talk   |  |
| 1.                                         | Class-II    | properties - power set - methods of proof | Chalk and Talk   |  |
|                                            | Class - III | Tutorial on Set theory                    | Chalk and Talk   |  |
|                                            | Class-I     | relations -types of relations             | Chalk and Talk   |  |
| 2.                                         | Class-II    | Types of Relations (Tutorial)             | Chalk and Talk   |  |
|                                            | Class - III | functions – types of functions            | Chalk and Talk   |  |
| 3.                                         | Class-I     | properties of functions (Tutorial)        | Chalk and Talk   |  |
|                                            | Class-II    | Mathematical Logic: Propositions          | Chalk and Talk   |  |
|                                            | Class - III | logical operators                         | Chalk and Talk   |  |
|                                            | Class-I     | Equivalences and implications             | Chalk and Talk   |  |
| 4.                                         | Class-II    | Connectives                               | Chalk and Talk   |  |
|                                            | Class - III | PCNF                                      | Chalk and Talk   |  |
| 5.                                         | Class-I     | DCNF                                      | Chalk and Talk   |  |
|                                            | Class-II    | Groups, Rings and Fields: Introduction-   | Chalk and Talk   |  |
|                                            | Class - III | Algebraic Structures                      | Chalk and Talk   |  |

| Week | Class       | Topics covered                                                                 | Mode of Delivery    |
|------|-------------|--------------------------------------------------------------------------------|---------------------|
|      | Class-I     | Groups- Abelian Group,                                                         | Chalk and Talk      |
| 6.   | Class-II    | Order- Cyclic Group                                                            | Chalk and Talk      |
|      | Class - III | Rings- Fields                                                                  | Chalk and Talk      |
|      | Class-I     | Basic Number Theory : Basic Notions-<br>Prime Number Theorem                   | Chalk and Talk      |
| 7.   | Class-II    | GCD- Euclidean algorithm, Solving ax + by = d,                                 | Chalk and Talk      |
|      | Class - III | Congruence- The Chinese Remainder<br>Theorem- Modular Exponentiation           | Chalk and Talk      |
| 8.   | Class-I     | Fermat and Euler- Primitive Roots-                                             | Chalk and Talk      |
|      | Class-II    | Inverting Matrices Mod <i>n</i> - Square Roots Mod <i>n</i> .                  | Chalk and Talk      |
|      | Class - III | Tutorial on Groups, Rings and Fields                                           | Chalk and Talk      |
|      | Class-I     | Graph Theory: Definitions and basic results                                    | PPT, Chalk and Talk |
| 9.   | Class-II    | Representation of a - Trees - Cycles -<br>Properties - Paths and connectedness | PPT, Chalk and Talk |
|      | Class - III | Sub graphs - Graph Isomorphism -<br>Operations on graphs                       | PPT, Chalk and Talk |
| 10.  | Class-I     | Cut sets - Spanning Trees                                                      | PPT, Chalk and Talk |
|      | Class-II    | Euler circuits- Hamiltonian graphs                                             | PPT, Chalk and Talk |
|      | Class - III | Tutorial on Graph Theory                                                       | PPT, Chalk and Talk |

The assessment in Theory component has periodical cycle tests, Assignments and end semester examination whose details are given in Table 7. The assessment in the course will be done for a total of 100 marks. The final marks will be computed for a total of 100 based on which the grades will be assigned.

| 7. Course Assessment Methods |                    |                                           |          |              |
|------------------------------|--------------------|-------------------------------------------|----------|--------------|
| SI.<br>No.                   | Mode of Assessment | Week/Date                                 | Duration | Weightage(%) |
| 1.                           | Cycle Test – 1     | 4 <sup>th</sup> week                      | 60 Mins  | 20           |
| 2.                           | Cycle Test – 2     | 8 <sup>th</sup> week                      | 60 Mins  | 20           |
| 3.                           | Assignments        | 5 <sup>th</sup> week,9 <sup>th</sup> week |          | 10           |
| 4.                           | End Semester Exam  | -                                         | 180 Mins | 50           |
|                              |                    |                                           | Total    | 100          |

### 8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

### **Reference Books**

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", 7<sup>th</sup> Edition, McGraw-Hill, 2012.
- 2. Mahima Ranjan Adhikari and Avishek Adhikari, "Basic Modern Algebra with Applications", Springer, 2014.
- 3. Kolman, Busby and Ross, "Discrete Mathematical Structures", 6<sup>th</sup> Edition, PHI, 2009.

# 9. Course Exit Survey (mention the ways by which the feedback about the course is assessed and indicate the attainment level)

- The students through the class rep may give their feedback at any time to the course Faculty which will be duly addressed.
- The students may also give their feedback during Class Committee meeting.
- The COs will be computed after arriving at the final marks.

# 10. Course Policy (including plagiarism, academic honesty, attendance, etc.)

# • Plagiarism

The students are expected to come out with their original algorithm design and code for problems given during the class work, home work, and tests/examinations. If found to copy from internet/other students, zero marks will be assigned.

### • Attendance

65% is a must. However, relaxation upto 15% will be given for leave on emergency requirements (medical, death, etc.) and representing institute events.

### Academic Honesty

- (i) Possession of any electronic device, if any, found during the test or exam, the student will be debarred for 3 years from appearing for the exam and this will be printed in the Grade statement/Transcript.
- (ii) Tampering of MIS records, if any, found, then the results of the student will be with held and the student will not be allowed to appear for the Placement interviews conducted by the Office of Training & Placement, besides (i).

### **11. Additional Course Information**

• The students can get their doubts clarified at any time with their faculty member with prior appointment.

| For Senate's Consideration                             |                                        |                                                   |
|--------------------------------------------------------|----------------------------------------|---------------------------------------------------|
| Dr. (Mrs.) S. SANGEETHA<br>Class Committee Chairperson | Bad<br>Mrs K. BAKIYA<br>Course Faculty | S. R. Culooudor and<br>Dr.S.R.BALASUNDARAM<br>HoD |