DEPARTMENT of Mechanical Engineering

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

		-	
	COURSE PLAN -	PARTI	
Name of the programme and specialization	B.Tech Mechanical Engin	eering	
Course Title	Physics		
Course Code	PHIR11	No. of Credits	3
Course Code of Pre- requisite subject(s)	Nil		
Session	Jan 2023	Section (if, applicable)	A
Name of Faculty	Dr. R. Justin Joseyphus	Department	Physics
Email	rjustinj@nitt.edu	Telephone No.	3614
Name of Course Coordinator(s) (if, applicable)	Dr.T. Sonamani Singh,	Dept of Physics	
E-mail	takhel@nitt.edu	Telephone No.	
Course Type	Core course	Elective cou	irse
Syllabus			
Lasers			
	ana stanistica of Lagons anonto	manua and atimula	to d amination a
	naracteristics of Lasers-sponta		
	- population inversion and las	ing action – laser s	systems: He-Ne Laser,
semiconductor laser-app	plications.		
Fiber Optics			
Snell's law-optical fiber	- principle and construction	- acceptance cone	- numerical aperture –
types of fibers - fiber op	tic communication principle	- fiber optic senso	rs.
Ouantum Mechanics	1 1	1	
•	mechanics-black body radiati	on photoelectric e	effect- wave and particle
	Broglie concept of matter wa	-	-
	Schrodinger's wave equation		
	- interpretation of wave funct	ion – particle conf	ined in one dimensional
infinite square well pote			
Nuclear and Particle Phy			
	forces - Nuclear models - She		
- Radioactivity - types a	nd half-life. Fundamental for	ces - Particle physi	ics - classification of
matter - quark model.		- •	
Physics of Advanced M	aterials		

Conductors: classical free electron theory (Lorentz –Drude theory) – electrical conductivity. Superconductors: definition – Meissner effect – type I & II superconductors – BCS theory (qualitative). Nanomaterials: introduction and properties – synthesis – top-down and bottom-up approach – applications.

	COU	IRSE O	BJECT	IVES											
	•		agation			0		nteraction of lasers							
	•		-		-		-	of matter		, wave	functi	ons an	d its		
			-					atomic so		1		G			
	•			e fundar	nentals	of nucl	ear forc	es, mode	els and o	classific	cation	of			
		matt		moulo	lao oho	ut tha	basias	of condu	atora	unaraa	aduate		nomo	toriala	
	•		-		-			of condu		-	lauci	<i>л</i> s, <i>п</i>	monna	lerials	
	COL					ichee, e	Ingineer	ing and		ogy.					
			Itcome	-	0)										
	Cou			5											
	1. k	now pr	inciple.	constru	ction a	nd work	king of l	asers and	d their						
		-	-				gineerin								
		r r					0	-8.							
	2. ez	xplain l	ight pro	pagatio	n in op	tical fib	ers, typ	es and th	leir						
	a	pplicati	ons.												
	2	•	1	•	1 1	1 .	C		•	1					
		3. experience and appreciate the behaviour of matter at atomic scale, and to impart knowledge in solving problems in modern science													
			-	-	ge in sol	ving pr	oblems	in mode	rn scien	ce					
and engineering.															
4. understand the role of nuclear and particle physics in applications															
			oactivity			-			phean	5115					
	11	KC TUUN	odetivit.	y and m		caction	3.								
	5. ree	. recognize, choose and apply knowledge to develop materials for													
	S	pecific	applicat	tions for	r comm	on need	ls.	-							
The	ory			Aligne	d Prog	gramm	e Outo	omes (PO) wi	th leve	el of o	corre	lation)	
						Pi	rogram	me Outo	romes	(COs)					
						• •	ogram			(000)					
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO
s)		101	1.02	1.00	101	1.00		101	1.00	100	10	11	12	1	2
3	CO1	H	М	H	-	М	L	-	-	-	-	-	М		
les	001		141		_	141		_			_		171		
E O	CO2	Н	М	Н	-	М	L	-	-	-	-	-	М		
ntc	000	1	11										11		
С С	CO3	L	Н	-	-	-	-	-	-	-	-	-	Н		
course Outcomes(cos)	CO4	L	Н	М	-	-	н	М	-	-	-	-	Н		
3	CO5	М	M	Н	-	Н	L	М	-	-	-	-	H		
		1	1	· ·	1		ı —		1	1	1	1	1 -	1	1

H - 3 (100- 68%) , M – 2 (34-67%) , L – 1 (0-33%)

COURSE PLAN – PART II

COURSE OVERVIEW

The Physics- I theory course is offered in the second semester to Mechanical branch. The subject has 3 credit theory weightage. The course introduces modern Physics principles applicable in engineering subjects.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Con tact Hours		Торіс		Mode of Delivery
1	3 h/ week First three weeks	and stimulated emi population inversion	er-characteristics of ssions – Einstein's on and lasing action ductor laser-applica	coefficients – – laser systems: H	Dus Chalk and Talk
2	One week 3 h/ week	acceptance cone - 1	fiber – principle an numerical aperture - nication principle –	-types of fibers -	Chalk and Talk
3	5 th – 7 th week 3 h/ week	photoelectric effect – de Broglie conce – Heisenberg's und equation – eigen va principle – interpre	cs sical mechanics-bla t- wave and particle pt of matter waves - certainty principle – alues and eigen func etation of wave func nensional infinite so	duality of radiation - electron diffraction Schrodinger's water tions – superposition tion – particle	on Chalk and ve Talk ion
4	8 th – 10 th week 3 h/ week	model - Nuclear re - Radioactivity - ty	and forces - Nuclea	undamental forces	Chalk and Talk
5	11 th – 13 th week 3 h/ week	Physics of Advance Conductors: classic theory) – electrical definition – Meissr BCS theory (qualit		ory (Lorentz –Dru rconductors: II superconductor lls: introduction ar	rs – Chalk and Id Talk/ppt
COUR	SE ASSESSN	IENT METHODS (s	hall range from 4 t	to 6)	
S.No.		f Assessment	Week/Date	Duration	% Weightage
1	(Offline Qu	ssment - I iz/short answers)	5 th -6 th week	60 min	25
2	(Offline Qu	ssment - II iz/short answers)	11-12 th week	60 min	25
3		ssment - III signment	13-14 th week	60 min	10

СРА	Compensation Assessment*	14-15 th week	60 min	25
4	Final Assessment Final Assessement for Theory (Semester Exam)*	As per Institute timetable	120 min	40
		Theory we	eightage	100

*mandatory; refer to guidelines on page 4

All the assessements may be conducted offline mode. Handwritten assignments have to be submitted.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Questionnaire about the effectiveness of the delivery method, topics and the knowledge gained shall be undertaken at the end of the course

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Can be contacted through phone 2503614.

COMPENSATION ASSESSMENT POLICY

Only one compensation assessment is allowed at the end of the course. A request letter has to be submitted to the class teacher on completion of Assessment III, for the CPA. The CPA shall be conducted before the Final assessment.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the

The above programme:	policy against ; s.	academic dishones	ity shall be	applicable	for all	the
ADDITIONAL INFO	RMATION					
FOR APPROVAL				/	-	
Course Peculty	CC-Chai	Ar	J.S.	bt	1	

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

	B.Tech.	Admitted in		P.G.
2018	2017	2016	2015	
35% or (Clas whichever is	s average/2) greater.	(Peak/3) or (C whichever is lo	lass Average/2) wer	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.
- h) A minimum of 20 % mark is required for pass at the final assessment exam as per 2019 regulation.

Page 5 of 5