

COURSE PLAN – PART I			
Name of the programme	MBA		
and			
specialization			
Course Title	Advanced Operations Res	search	
Course Code	MB 862	No. of Credits	2
Course code of pre-	-		
requisite subjects			
Session	November 2020 -	Section (if	
	February 2021	applicable)	
Name of Faculty	Dr Yamini S.	Department	Management Studies
Email	syamini@nitt.edu	Telephone No.	9445371912
Name of Course			
Coordinator(s) (if, applicable)			
Course Type	Core course		
SYLLABUS (approved in BoS)			

STELADOS (approved in bos

OBJECTIVE

- To create an understanding on advanced operational techniques in operations management
- To apply mathematical techniques and algorithms to real world scenarios in various fields such as finance, healthcare, manufacturing, and transportation.
- To develop skills in interpreting and communicating results, selecting appropriate tools, and critically analyzing the assumptions and limitations of the models.

Unit I Advanced Linear Programming Applications

Make or Buy decision models - Inventory Management models - Financial Planning models - Marketing Research models - Work force assignment models.

Unit II Sensitivity Analysis

Introduction to sensitivity analysis - Maximization and Minimization problems - Shadow Price - Reduced Cost - Simultaneous change of Inputs using 100% rule.

Unit III Variants of Linear Programming Models

Introduction to Data Envelopment Analysis - Efficiency Frontier - Constant returns to scale and Variable returns to scale - Goal programming.

Unit IV Non-Linear Programming

Introduction to Nonlinear program - constrained and unconstrained non-linear models-Lagrange multiplier - Khun tucker conditions.

Unit V Stochastic Models

Introduction to Markov chains - Chapman Kolmogorov Equation- Applications of Markov Analysis - Markov Decision Models.

TEXT BOOKS:

Anderson, D.R., Sweeney, D.J., Williams, T.A. and Martin, K., An Introduction to Management Science: Quantitative Approach to Decision Making, 13th Edition, SouthWestern, (2012).

COURSE OBJECTIVES

To create an understanding and develop knowledge of the mathematical structure of the most-commonly used linear optimisation models and their applications.

MAPPING OF COS WITH POS

Cours	Programme	
		Outcomes (PO)
1.	To understand the sensitivity analysis and the related business	1,2,4
	implications	
2.	To know the applications of mixed integer linear programming	2,3,4,6
3.	To understand how to measure the efficiency and productivity	2,3,4,6,7
	when we have multiple decision-making units	
4.	To learn to make decisions when there are multiple objectives	2,3,4,5
5.	To understand how to make decisions under uncertainty	1,2,4,5,7

COURSE PLAN - PART II

COURSE OVERVIEW

This course will help you understand the applications of linear optimisation models. The primary deterministic models discussed will be Linear programming, Mixed Integer Linear programming, Data envelopment Analysis and Goal Programming. The sensitivity analysis involved in these models will also be discussed. Further, complex models such as non-linear programming and Markov processes will be covered as part of the course. The main emphasis will be on mathematical formulation and solution procedure using MS Excel.

COURSE TEACHING AND LEARNING ACTIVITIES

S. No	Week	Topic	Mode of Delivery

CALLTON O						
1	1	Linear Programming			Lectu	ıre, PPT, Hands-
		Applications of Linea	-	on sessions		ssions
2	2	Solving LP models using Excel Introduction to Sensitivity Analysis			PPT	In-class Activity
2		Understanding sensiti	•	complex	111,	m-class Activity
		LP applications	civity analysis in	complex		
		Pricing out of a produ	ct using sensitivit	ty analysis		
3	3	Introduction to	Mixed Integer	Linear	In-cla	ass Activity,
		programming			Tuto	rial
		Branch and bound Al	gorithm		1 0000	
4	4	Formulating complex	quantitative mod	lels	In-class Activity,	
		Production and Inven	ntory models		Hand	ls-on Session
		Revenue Managemer	nt Models			
		Portfolio models				
5	5	Analysing problems	with multiple obje	ectives	In-class Activity,	
			Goal Programming			ls-on Session
		Data Envelopment A	nalysis			
6	6	Project Management using LP		In-class Activity,		
		Crashing using Excel		Hands-on Session		
7	7	Introduction to Non-Linear Programming PP		PPT,	PPT, Lecture, In-class	
		Analysing Global Optima		Activ	vity	
8	8	Analysing decisions under uncertainty			PPT,	Lecture, Class-
		Introduction to Markov Chains		room	Discussion	
9	9	Classification of States		DDT	Class room	
9]	Classification of States Marketing Analytics using Markov processes			Class-room assion	
		Warketing Analytics	using Markov pro	occsses	21500	3551011
10	10	Markov Decision Process Presen		entation, Lecture		
		Assignment Presenta	tion			
COURS	E ASSES	SSMENT METHODS (S	shall range from 4 t	o 6)		
S.No	Mode o	of Assessment	Week / date	Duration		% Weightage
1	Cycle t	est I	December 2023	1.5 hour	ır 25 %	
2	Tutorial		January 2023	1 hour		15 %
3	Assign	ment Submission	January, February 2023		10 %	
4	Final A	ssessment	March 2023	2.5 hours		50 %
	1		1	1		1

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Feedback received from student's anonymous survey

COURSE POLICY (including compensation assessment to be specified)

Mode of Correspondence: e-mail / Phone

Assignment late submissions will not be allotted any marks

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Any forms of cheating during the online-examinations, talking to other students, copying from others during an assessment, plagiarism in answers will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programs.

l	ADDITIONAL INFORMATION, IF ANY

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in			P.G.	
2018	2017	2016	2015	
35% or (Class whichever is g		(Peak/3) or (Cl whichever is lov	= '	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.

For Approval		
Course Faculty:	CC Chairperson:	HOD: