

DEPARTMENT OF MANAGEMENT STUDIES NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI - 620 015, TAMIL NADU, INDIA

Phone: +91-431-2503700 (O), +91-431-2503711 (Direct), Fax: +91-431-2500133 (O/o the Director), E-Mail: psridevi@nitt.edu

	COURSE PLAN - PART	I	
Course Title	BASIC DATA ANALYTICS		
Course Code	MB 821	No. of Credits	2
Course Code of Pre-requisite subject(s)	NIL		
Session	July '23 – Oct '23	Section	
Name of Faculty	Dr. M. Punniyamoorthy	Department	MBA
Email	punniya@nitt.edu	Telephone No.	0431 250 3032
Name of Course Coordinator(s) (if, applicable)	NIL		
Course Type	Core course IV Elective course		

SYLLABUS

Unit I Multiple Regression

Assumptions for General Linear Regression Model, Ordinary Least Square (OLS) Approach – measures of fit, statistical inferences – Hypothesis testing and interval estimation- Data cleaning – Out influential observations-

Unit II

Dummy regressions and conjoint analysis, multi collinearity, Logistic regression- Grouped Data-Weighted Least square (WLS), Individual Data-Newton Raphson method- Error rate estimation.

Unit III Discriminant Analysis – I

Introduction, the Two Group problem - Variable contribution - The case of discrete - Variables

Unit IV Discriminant Analysis – II

The K groups problem, Error rate estimate in multiple groups, Interpretation of multiple discriminant analysis solution- step wise selection of variables

UNIT V Factor Analysis

The basic model, Extraction of factors – Principal factor – maximum likelihood method, factor rotation – orthogonal, oblique rotations, Factor score, interpretations of factor analysis solutions.

COURSE OBJECTIVES

To help the students enrich their knowledge on analytical tools and techniques. The course is application based. SPSS or SAS package will be used for applications and analysis part.

COURSE OUTCOMES (CO)		
Course Outcomes	Aligned Programme Outcomes (PO)	
 Understand the fundamental concepts of data analytics and its role in decision-making. Describe the data analytics process, including data collection, cleaning, exploration, analysis, and visualization. Identify different types of data (categorical, numerical, etc.) and understand their characteristics. Apply basic data preprocessing techniques such as handling missing values and dealing with outliers. 	1, 3, 4	
 Utilize data visualization tools and techniques to effectively communicate insights from data. Perform basic hypothesis testing and understand concepts like p-values, significance levels, and null hypotheses. Gain hands-on experience with a programming language like Python or R for data analysis tasks. Apply basic machine learning concepts such as classification and regression to solve predictive analytics problems. 	2, 4, 5	
 Interpret and communicate the results of data analysis to both technical and non-technical audiences. Develop a foundational understanding of data analytics tools and platforms available in the industry. Work on practical projects that involve real-world datasets to reinforce learning and problem-solving skills. Collaborate effectively in a team environment on data analysis projects. 	3, 4, 5	

Sl.No.	Week	Topic	Mode of Delivery	
1.	3 rd week of July 2023 Class – 1 st week (3 Contact Hours) Multiple Regression Assumptions for General Linear Regression Model Ordinary Least Square (OLS) Approach – measure of fit,		Lecture - Power PointPresentation	
2.	Class- 2 nd week (3 Contact Hours)	statistical inferences – Hypothesis testing and interval estimation- Data cleaning – Outliers and influential observations-	Lecture - Power PointPresentation	
3.	Class- 3 rd week (3 Contact Hours)	Dummy regressions and conjoint analysis, multi- collinearity,	Lecture - Power PointPresentation	
4.	Class- 4 th week (3Contact square (WLS), Hours) Logistic regression- Grouped Data-Weighted Least square (WLS),		Lecture - Power PointPresentation	

5. Class- 5 th week (3 Contact Hours)		Individual Data-Newton Raphson method- Error rate estimation.	Lecture - Power PointPresentation	
	(5 Contact Hours)	Tatio Communion.	PointPresentation	
6.	Class- 6th week	Discriminant Analysis	Lecture - Power	
	(3 Contact Hours)	Introduction, the Two Group problem – Variable contribution – The case of discrete - Variables	PointPresentation	
7.	7 th week	Cycle Test for IV Trimester / MBA scheduled		
9.	Class- 8 th week	The K groups problem, Error rate estimate in	Lecture - Power	
	(3 Contact Hours)	multiple groups, Interpretation of multiple	PointPresentation	
		discriminant analysis solution- step wise selection of variables		
10.	Class – 9 th week	The basic model, Extraction of factors - Principal	Lecture - Power	
	(3 Contact Hours)	factor – maximum likelihood method.	PointPresentation	
	Class - 10 th week	Factor rotation – orthogonal, oblique rotations.	Lecture - Power	
	(3 Contact Hours)		Point Presentation	
	Class – 11th week	Factor score, interpretations of factor analysis	Lecture - Power	
	(3 Contact Hours)	solutions.	PointPresentation	

Mode of Assessment	Week / Date	Remarks	% Weightage
Cycle Test	7th week -2023	Class room evaluation – Individual assessment	25%
Seminar	8th week to 12th week – 2023	Classroom assessment - Group	10%
Assignment, Tutorial	9th week -2023	Classroom assessment - Individual	15%
End Semester Exam	12th week		50%
	Cycle Test Seminar Assignment, Tutorial	Cycle Test 7th week -2023 Seminar 8th week to 12th week - 2023 Assignment, Tutorial 9th week -2023	Cycle Test 7th week -2023 Class room evaluation — Individual assessment Seminar 8th week to 12th week — 2023 Classroom assessment — Group Assignment, Tutorial 9th week –2023 Classroom assessment – Individual

Note:

1. Attending all the assessments (Assessment 1 to 4) is MANDATORY for every student.

2. Every student is expected to score minimum 40% to pass the course. Otherwise the student would be declared fail and 'F' grade will be awarded.

COURSE EXIT SURVEY

- Feedbacks are collected before final examination through MIS or any other standard format followed by the institute
- Students, through their Class Representatives, may give their feedback at any time to the course faculty which will be duly addressed.

The students may also give their feedback during Class Committee Meeting.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- ➤ At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

FOR APPROVAL

Course Faculty

Dr. M. Punniyamoorthy

CC- Chairperson

HOD