

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	COURSE PLA	N-PARTI		
Name of the programme and specialization	B.TECH. ELECTRICAL AND ELECTRONICS ENGINEERING			
Course Title	POWER SYSTEM ANA	LYSIS		
Course Code	EEPC25	No. of Credits	4	
Course Code of Pre- requisite subject(s)				
Session	July	Section (if, applicable)	A	
Name of Faculty	S ARUL DANIEL	Department	EEE	
Official Email	DANIEL@NITT.EDU	Telephone No.		
Name of Course Coordinator(s) (if, applicable)				
Official E-mail		Telephone No.		
Course Type (please tick appropriately)	Core course	Elective cour	se	
Syllabus (approved in	BoS)			
	of power system compone	nts – single line diagram	– per unit quantities–	
bus impedance and admitt				
		Danhean and East docar	inled methods of load	
	ds – Gauss-Seidel, Newton-	naprisori anu rast decot	ipieu ilietilous oi loau	
flow analysis.				
Fault studies – Symmetrica	al fault analysis, Analysis thro	ough impedance matrix,	Current limiting	
reactors.				
Fault analysis - Unsymmetr	rical short circuit analysis - L	G, LL, LLG; Fault parame	ter calculations – Open	
circuit faults.				
	tate and transient stability-	Swing equation - Equal	area criterion –	
multimachine stability anal	lysis.			
COLUDER OF ITECTIVES				
COURSE OBJECTIVES				
		and land them also the		
To model various power sy	stem components and carry	out load flow, short-cir	cuit and stability studies.	

MAPPING OF COs with POs

Course	e obj.			
COs		1	2	3
~	PO 1	Н	Н	Н
S	PO 2	Н	Н	Н
<u>a</u>	PO 3	М	Н	М
es	PO 4	М	Н	Н
E	PO 5	Н	Н	Н
ğ	PO 6	L	L	L
Õ	PO 7	L	L	L
ше	PO 8	L	L	L
ramme Outcomes (POs)	PO 9	Н	Н	Н
gra	PO10	L	L	L
Prog	PO11	L	L	L
ш	PO12	L	L	L

outcome

Course Objectives:

Upon completion of the course, the student will be able to

- 1. Carry out load flow study of a practical system
- 2. To Simulate and analyze fault
- 3. Study the stability of power system

COURSE PLAN - PART II

COURSE OVERVIEW

Power systems is the geographically spread large system that mankind had ever devised. Nation's growth is dependent on its per-capita energy consumption and hence development of power systems is significant. In order to plan for expansion due to the ever increasing consumption of electricity and to operate the system at its best performance, certain studies are essential. This course will give the rudiments of modelling a power system and to use the model in system studies.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Contact Hours	Topic	Mode of Delivery
1.	1 and 2	Introduction, one line diagram and per-unit representation of transformers and synchronous machines	Lecture and Tutorial
2.	3	Y bus formation	
2008			Lecture and Tutorial
4.	4	Static load flow equations,	
		Gauss Seidel method	Lecture, Tutorial and Simulation
5.	5 and 6	NR method and decoupled load	
		flows	Lecture, Tutorial and Simulation
6.	7 to 9	Z bus formation and equivalent	
•		circuits. Three-phase short circuit studies.	Lecture and Tutorial
7.	10	Symmetrical components and symmetrical networks	Lecture and Tutorial
8.	11 and 12	Line to Ground, Line to Line and double line to ground fault studies	

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

		Open circuit faults	Lecture, Tutorial and Simulation
9.	13	Stability studies	Lecture and Tutorial
10	14 and 15	Group Task Assessment	
11.	16		

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Assessment	Week/Date	Mode	% Weightage
1	Summative Assessment 1	End of 6 th week	written	20%
2	Summative Assessment 2	End of 12 th week	written	20%
3	Mini project/research	14 th week	Practical/Write up	20%
4	Final Assessment	16 th week	written	40%

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

At the end of the course

COURSE POLICY (including compensation assessment to be specified)

One compensation assessment for item 4 above. [Sem notive Assessment 20']. weightage)

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.

The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

programmes.	against academic dishonest	y snall be	applicable	tor all the
DUITIONAL INFORMATI	ON, IF ANY			
OR APPROVAL				
OR APPROVAL	- dals		1	<u></u>

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in			P.G.	
2018	2017	2016	2015	
35% or (Class whichever is g		(Peak/3) or (Continue)	lass Average/2) wer	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.