NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

4. Design basic digital logic circuits

Department of Electrical and Electronics Engineering

	COURSE OUTL		
Course Title	Circuits and Digital Labor	ratory	
Course Code	EELR10	No. of Credits	2
Session	August 2023	Section	A
Faculty	Dr. S. Mageshwari	Department	EEE
Office Email	mageshwari@nitt.edu	Telephone No	04312503260
Pre-requisites Course Code	EEPC10 Circuit Theory		
Name of Course	Dr. S. Mageshwari		
Coordinator Course Type	Core course	Elective cou	ırse
Syllabus			
 Verification of T Verification of S Verification of K Transient charac Transient charac Transient charac Design of Multip Design of magni Design of 4 bit p Design of synch Design of asynch Mini Project 	riority encoder ronous sequential logic circui nronous sequential logic circu	er Transfer Theore ge law. iit. coder and decoder	
Understand and power.Understand and	nd analyze the basic theorems	uits and measuren	nent of single and three-phase
COURSE OUTCOMES			
Upon completion of the	course the students will be ab	le to	
1. Verify the network	theorems and operation of ele	ectrical and electro	onic circuits.
2. Choose the appropriate different circuits.	riate equipment's for measur	ing the electrical	quantities and verify the same fo
3. Prepare the technical	al report on the experiments c	arried out.	*

Mapping	of Pro	gramm	e outco	mes wit	h Cour	se outco	omes:					
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	2	2	3	3	3	2	3
CO2	3	2	3	3	3	2	2	3	3	3	2	3
CO3	3	2	3	3	2	2	2	3	3	3	3	3
CO4	3	2	3	3	3	2	2	3	3	3	2	3

		COURSE DI AN (BART II)	
COURS	SE OVERVIEV	COURSE PLAN (PART-II)	
		ovide practical and hands-on experience in the ir	nnlementation of electric
	and digital circ		inplementation of electric,
		G AND LEARNING ACTIVITIES	
S.No.	Week	Topic	Mode of Delivery
1.	Week 1	Demonstration and use of Bread board, Variable regulated power supply, Function generator, Digital Storage Oscilloscope, Multi meters, etc.	Laboratory demonstration
2. Week 2		Verification of Kirchhoff's Current and Voltage law.	Conducting experiment in the Laboratory
3.	Week 3	Verification of Thevenin and Maximum Power Transfer Theorem.	
4.	Week 4	Verification of Superposition Theorem	
5.	Week 5	 Transient characteristics of RL series circuit. Transient characteristics of RC series circuit. Transient characteristics of RLC series circuit. 	
7.	Week 6 Design of Multiplexer and De Multiplexer. Encoder and decoder		Conducting experiment in the Laboratory
8.	Week 7	Design of Magnitude Comparator	
9.	Week 8	Design of 4-bit Priority encoder	
10.	Week 9	Characteristics of CB configuration of BJT	
11.	Week 10	Characteristics of CE configuration of BJT	
12.	Week 11	Design of Mod-n Counter	
13.	Week 12	Design of 3-bit up/down counter	
14.	Week 13	Design of 3-bit Asynchronous counter	
15.	Week 14	Mini-Project	

COURSE ASSESSMENT METHODS					
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage	
1.	Internal assessment	During regular	3 hours in each	40 %	
2	(Observation+Report) Mid Sem Test 1	laboratory classes Week 6	lab class	15.0/	
3.	Mid Sem Test 2	Week 11	1 hour	15 %	
4.	Final Assessment	Week 15	3 hours	15 %	

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

1. Text / references mentioned in EEPC10 Circuit Theory course.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

ATTENDANCE

- 1. Every student should maintain minimum 75% physical attendance. Students not meeting these criteria will have to RE DO the course.
- 2. Students who have missed the regular lab class should get the prior permission for attending compensation lab class.

ACADEMIC HONESTY & PLAGIARISM

- 1. Possessing of mobile phones, carrying bits of paper, talking to other students and copying assessment from others is considered as dishonesty.
- 2. Zero marks will be awarded to offenders for copying the simulations and for the one who shared the simulations.
- 3. Preventing or hampering other students from pursuing their academic activities is also considered as academic dishonesty.
- 4. Any evidence of such academic dishonesty will result in the loss of marks on that assessment. Additionally, the names of those students so penalized will be reported to the class committee chairperson and HoD for necessary action.

ADDITIONAL COURSE INFORMATION

CORRESPONDENCE

- 1. All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through their webmail.
- 2. Queries (if required) may be emailed to mageshwari@nitt.edu / contact me during the lab sessions for any clarifications.

FOR SENATE'S CONSIDERATION

Course Faculty S. Mages CC-Chairperson Magament HOD 3/08/23